
www.bmc.com

KeyStroke Language (KSL)
User Guide

Supporting

Version 6.3.04 of CONTROL-M for z/OS®

Version 6.3.04 of CONTROL-M/Analyzer
Version 6.3.04 of CONTROL-M/Assist
Version 6.3.04 of CONTROL-M/Links
Version 6.3.04 of CONTROL-M/Restart
Version 6.3.04 of CONTROL-M/Tape
Version 6.3.04 of CONTROL-D
Version 6.3.04 of CONTROL-V

Version 6.3.04 of CONTROL-O

March 2009

Contacting BMC Software

You can access the BMC Software website at http://www.bmc.com. From this website, you can obtain information
about the company, its products, corporate offices, special events, and career opportunities.

United States and Canada

Address BMC SOFTWARE INC
2101 CITYWEST BLVD
HOUSTON TX 77042-2827
USA

Telephone 713 918 8800 or
800 841 2031

Fax 713 918 8000

Outside United States and Canada

Telephone (01) 713 918 8800 Fax (01) 713 918 8000

© Copyright 2009 BMC Software, Inc.

BMC, BMC Software, and the BMC Software logo are the exclusive properties of BMC Software, Inc., are registered with the U.S. Patent
and Trademark Office, and may be registered or pending registration in other countries. All other BMC trademarks, service marks, and
logos may be registered or pending registration in the U.S. or in other countries. All other trademarks or registered trademarks are the
property of their respective owners.

IBM is a registered trademark of International Business Machines Corporation.

BMC Software considers information included in this documentation to be proprietary and confidential. Your use of this information is
subject to the terms and conditions of the applicable End User License Agreement for the product and the proprietary and restricted
rights notices included in this documentation.

Restricted rights legend
U.S. Government Restricted Rights to Computer Software. UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF
THE UNITED STATES. Use, duplication, or disclosure of any data and computer software by the U.S. Government is subject to
restrictions, as applicable, set forth in FAR Section 52.227-14, DFARS 252.227-7013, DFARS 252.227-7014, DFARS 252.227-7015, and
DFARS 252.227-7025, as amended from time to time. Contractor/Manufacturer is BMC SOFTWARE INC, 2101 CITYWEST BLVD,
HOUSTON TX 77042-2827, USA. Any contract notices should be sent to this address.

http://www.bmc.com

3

Customer support

You can obtain technical support by using the BMC Software Customer Support website or by contacting Customer
Support by telephone or e-mail. To expedite your inquiry, see “Before contacting BMC.”

Support website

You can obtain technical support from BMC 24 hours a day, 7 days a week at http://www.bmc.com/support_home.
From this website, you can

■ read overviews about support services and programs that BMC offers
■ find the most current information about BMC products
■ search a database for issues similar to yours and possible solutions
■ order or download product documentation
■ report an issue or ask a question
■ subscribe to receive proactive e-mail alerts when new product notices are released
■ find worldwide BMC support center locations and contact information, including e-mail addresses, fax numbers, and

telephone numbers

Support by telephone or e-mail

In the United States and Canada, if you need technical support and do not have access to the web, call 800 537 1813 or
send an e-mail message to customer_support@bmc.com. (In the subject line, enter SupID:<yourSupportContractID>,
such as SupID:12345). Outside the United States and Canada, contact your local support center for assistance.

Before contacting BMC

Have the following information available so that Customer Support can begin working on your issue immediately:

■ product information

— product name
— product version (release number)
— license number and password (trial or permanent)

■ operating system and environment information

— machine type
— operating system type, version, and service pack or other maintenance level such as PUT or PTF
— system hardware configuration
— serial numbers
— related software (database, application, and communication) including type, version, and service pack or

maintenance level

■ sequence of events leading to the issue

■ commands and options that you used

■ messages received (and the time and date that you received them)

— product error messages
— messages from the operating system, such as file system full
— messages from related software

http://www.bmc.com/support_home
mailto:customer_support@bmc.com

4 KeyStroke Language (KSL) User Guide

Contents 5

Contents
About This Guide 11

Conventions Used in This Guide. 12
Information New to This Version . 14
Related Publications . 15

Chapter 1 Using KeyStroke Language (KSL) 17

Activating KeyStroke Language Scripts . 18
Principles of Operation . 19
Language Syntax . 22
Special considerations . 23

Chapter 2 KSL commands and variables 25

Commands . 25
Variables . 36
Special KSL Variables . 36

Chapter 3 KeyStroke OpenAccess (KOA) 39

KOA Language Overview . 40
KOA Logic . 40
Principles of Operation. 43
Sample KOA Scripts and Reports . 48
Activating the KOA Language . 48
KOA Commands and Variables Summary . 49
KOA Commands and Variables . 50

KOA Implementation Considerations . 54
Session Characteristics . 54
Initiating a Session. 55
Exchanging Messages . 56
Terminating a Session . 57
Unexpected Messages . 59
AutoRefresh Handling . 60
Using KOA to Access the IOA Online Facility . 61
Working with CONTROL-O AutoEdit Variables. 62
Exception Handling. 63
Communicating With CONTROL-O . 64
Using a Preset KOA Environment . 66
Preset Environments and Batch Jobs . 69

6 KeyStroke Language (KSL) User Guide

Updating KOA Scripts Requiring a Preset Environment. 69
Testing a Script . 70

KOA Recording. 70
KOA Recorder Screen . 71
Sample Output Script . 72

Chapter 4 Using KSL with CONTROL-M/Restart 75

Automatic Restart Definition utility (JCLCTRDF). 75
Manual Restart Confirmation report (REP5MNCN). 76
Restart detail report (REP5RSTR). 77
Last Night Restart History report (REP3RSHS) . 77
Restart Time Savings report (RPRSV) . 79
Last Night SYSOUT Scan Summary report (REPJOBSY) . 80

Appendix A AutoEdit Facility in KSL 81

System Variables. 82
AutoEdit System Variables: . 82
User-Defined Variables . 84
Rules of Variable Substitution . 85
AutoEdit Operators . 87
%%$CALCDATE Function. 87
%%$SUBSTR Function . 88
%%$TIMEINT Function . 89
%%$PARSE Function . 89

Appendix B KOA VTAM Exception Codes 101

Appendix C Sample KeyStroke Reports and Utilities 105

Sample KSL Report Outputs . 106

Appendix D KSL Library Scripts 109

Index 115

 Figures 7

Figures
VTAM Session LOGOFF . 42
KOA Script – Example 1 . 43
Example of CONTROL-O Global Variables Being Accessed or set by a KOA Script . .

65
Sample CONTROL-O for Optimizing DO KSL Statements using KOA Scripts 67
Sample KOA Script (CICST) invoked by CONTROL-O Rule Subparameter

INITPROC to handle the Preset Environment . 67
Sample KOA Script (CICSINQ) invoked by CONTROL-O Rule to Check whether a

Data Set is Open . 67
Sample KOA Script (CICOPEN) invoked by CONTROL-O Rule to Open a Closed

Data Set . 68
Sample Job Containing a Controlling KOA Script . 69
KOA Recorder Screen . 71
Sample KOA Output Script . 73
Manual Restart Confirmation report . 76
Restart Detail Report (REP5RSTR) . 77
Last Night Restart History Report (REP3RSHS) . 78
 Restart Time Savings report (RPRSV) . 79
Last Night SYSOUT Scan Summary Report (REPJOBSY) . 80
Output from KSL Library Sample KSLREPSCHED . 106

8 KeyStroke Language (KSL) User Guide

 Tables 9

Tables
Step-by-Step Explanation of Script Example . 19
KSL Screen Commands . 25
KSL Flow Commands . 27
KSL Print Commands . 31
KSL Processing Commands . 33
Special KSL Variables . 36
KOA Script – Example 1 Explanation . 43
KOA Script – Example 2 Explanation . 45
IOARKOA Important DD Statements . 48
KOA Screen Commands . 49
KOA Flow Commands . 49
KOA Communication Commands . 49
KOA Special Variables . 50
KOA Screen Commands . 50
KOA Flow Commands . 50
KOA Communication Commands . 51
KOA Special Variables . 54
KOA Sample Script to Log on to CICS . 56
KOA Sample Script to Terminate a CICS Session . 58
KOA Sample Script to Terminate a TSO Session . 58
KOA Sample Script to Handle Unexpected Messages During a TSO Session 59
KOA Sample Script for Handling AutoRefresh using OMEGAMON 60
KOA Sample Script to Access the IOA Online Facility . 61
KOA Sample Script Using AutoEdit and KOA Variables . 63
KOA Exception Handling Variables . 63
KOA Sample Script to Check KOA Return Codes . 65
Step-by-Step Description of DO KSL Statements in Sample CONTROL-O Rule . . . 68
Fields of the KOA Recorder Screen . 71
Parameters for Automatic Restart Definition utility (JCLCTRDF) 76
AutoEdit System Variables . 82
AutoEdit Operators . 87
KOA VTAM Exception Codes . 101

10 KeyStroke Language (KSL) User Guide

About This Guide 11

About This Guide
This guide includes the following topics:

Chapter 1, “Using KeyStroke Language (KSL)”

Description of the IOA KeyStroke Language (KSL). KSL is used to produce
customized reports from information extracted from IOA screens.

Chapter 2, “KSL commands and variables”

Descriptions of commands and variables used in KSL scripts.

Chapter 3, “KeyStroke OpenAccess (KOA)”

Description of the KeyStroke OpenAccess facility (KOA). KOA is used to automate
two-way communication between CONTROL-O and VTAM applications, and allows
information gathered from VTAM to be used in the CONTROL-O decision-making
process.

Chapter 4, “Using KSL with CONTROL-M/Restart”

Description of CONTROL-M/Restart predefined KSL scripts for producing reports.

Appendix C, “Sample KeyStroke Reports and Utilities”

Appendix B, “KOA VTAM Exception Codes”

Appendix C, “Sample KeyStroke Reports and Utilities”

Appendix D, “KSL Library Scripts”

Index

12 KeyStroke Language (KSL) User Guide

Conventions Used in This Guide

Conventions Used in This Guide
Notational conventions that may be used in this guide are explained below.

Standard Keyboard Keys

Keys that appear on the standard keyboard are identified in boldface, for example,
Enter, Shift, Ctrl+S (a key combination), or Ctrl S (a key sequence).

Pre configured PFKeys

Many commands are pre configured to specific keys or key combinations. This is
particularly true with regard to numbered PFKeys, or pairs of numbered PFKeys. For
example, the END command is pre configured to, and indicated as, PF03/PF15. To
execute the END command, press either the PF03 key or the PF15 key.

Instructions to enter commands may include

■ only the name of the command, such as, enter the END command
■ only the PF keys, such as, press PF03/PF15

■ or both, such as, press PF03/PF15, or enter the END command

Command Lines and Option Fields

Most screens contain a command line, which is primarily used to identify a single
field where commands, or options, or both, are to be entered. These fields are usually
designated COMMAND, but they are occasionally identified as COMMAND/OPT or
COMMAND/OPTION.

Option field headings appear in many screens. These headings sometimes appear in
the screen examples as OPTION, or OPT, or O.

WARNING
The commands, instructions, procedures, and syntax illustrated in this guide presume that the
keyboards at your site are mapped in accordance with the EBCDIC character set. Certain
special characters are referred to in this documentation, and you must ensure that your
keyboard enables you to generate accurate EBCDIC hex codes. This is particularly true on
keyboards that have been adapted to show local or national symbols. You should verify that

$ is mapped to x'5B'
is mapped to x'7B'
@ is mapped to x'7C'

If you have any questions about whether your keyboard is properly mapped, contact your
system administrator.

About This Guide 13

Conventions Used in This Guide

Names of Commands, Fields, Files, Functions, Jobs, Libraries, Members,
Missions, Options, Parameters, Reports, Subparameters, and Users

The names of commands, fields, functions, jobs, libraries, members, missions,
options, parameters, reports, subparameters, users, and most files, are shown in
standard UPPERCASE font.

User Entries

In situations where you are instructed to enter characters using the keyboard, the
specific characters to be entered are shown in this UPPERCASE BOLD text, for
example, type EXITNAME.

Syntax statements

In syntax, the following additional conventions apply:

■ A vertical bar (|) separating items indicates that you must choose one item. In the
following example, you would choose a, b, or c:

a | b | c

■ An ellipsis (. . .) indicates that you can repeat the preceding item or items as many
times as necessary.

■ Square brackets ([]) around an item indicate that the item is optional. If square
brackets ([]) are around a group of items, this indicates that the item is optional,
and you may choose to implement any single item in the group. Square brackets
can open ([) and close (]) on the same line of text, or may begin on one line of text
and end, with the choices being stacked, one or more lines later.

■ Braces ({ }) around a group of items indicates that the item is mandatory, and you
must choose to implement a single item in the group. Braces can open ({) and
close (}) on the same line of text, or may begin on one line of text and end, with the
choices being stacked, one or more lines later.

Screen Characters

All syntax, operating system terms, and literal examples are
presented in this typeface. This includes JCL calls, code examples, control
statements, and system messages. Examples of this are:

■ calls, such as

CALL ’CBLTDLI’

■ code examples, such as

14 KeyStroke Language (KSL) User Guide

Information New to This Version

FOR TABLE owner.name USE option, . . . ;

■ control statements, such as

//PRDSYSIN DD * USERLOAD PRD(2) PRINT

■ system messages, both stand-alone, such as You are not logged on to
database database_name, and those embedded in text, such as the message
You are not logged on to database database_name, are displayed on
the screen.

Variables

Variables are identified with italic text. Examples of this are:

■ In syntax or message text, such as
Specify database database_name

■ In regular text, such as
replace database database_name1 with database database_name2 for the current
session

■ In a version number, such as
EXTENDED BUFFER MANAGER for IMS 4.1.xx

Special elements

This book includes special elements called notes and warnings:

Information New to This Version
Where substantive additions and modifications to the content of this guide occur,
revision bars have been inserted in the margin.

NOTE
Notes provide additional information about the current subject.

WARNING
Warnings alert you to situations that can cause problems, such as loss of data, if you do not
follow instructions carefully.

About This Guide 15

Related Publications

Related Publications

INCONTROL for z/OS Installation Guide

A step-by-step guide to installing INCONTROL products using the INCONTROLTM
Installation and Customization Engine (ICE) application.

INCONTROL for z/OS Administrator Guide

Information for system administrators about customizing and maintaining
INCONTROL products.

INCONTROL for z/OS Utilities Guide

Describes utilities designed to perform specific administrative tasks that are available
to INCONTROL products.

INCONTROL for z/OS Security Guide

A step-by-step guide to implementing security in INCONTROL products using the
ICE application.

INCONTROL for z/OS Messages Manual

A comprehensive listing and explanation of all IOA and INCONTROL messages and
codes.

CONTROL-M User Guide

Guide to CONTROL-M features, options and usage.

CONTROL-M/Restart User Guide

A complete guide to CONTROL-M/Restart features, options and implementation.

CONTROL-M/Tape User Guide

Comprehensive information about the functions, features, and operation of
CONTROL-M/Tape.

16 KeyStroke Language (KSL) User Guide

Related Publications

CONTROL-M/Analyzer User Guide

Explanation of CONTROL-M/Analyzer facilities and implementation techniques.
Online, step-by-step instructions are provided.

CONTROL-D User Guide

A complete guide to using CONTROL-D for printing and decollation of reports.

CONTROL-D and CONTROL-V User Guide

A complete guide to using CONTROL-V for printing, decollation and migration of
reports.

CONTROL-O User Guide

A complete guide to CONTROL-O features, options and implementation.

Chapter 1 Using KeyStroke Language (KSL) 17

C h a p t e r 1
1 Using KeyStroke Language (KSL)

The IOA standard KeyStroke Language (KSL) is a general purpose language that
simulates, in batch, keystrokes that are entered in the IOA Online facility. KSL
language statements (commands) are specified in programs called scripts.

Activating KeyStroke Language Scripts . 18
Principles of Operation . 19
Language Syntax . 22
Special considerations . 23

The most common use of KSL scripts is to generate reports from the IOA Core and
INCONTROL product repositories. Utilities are also frequently written in KSL
scripts.

Once you are familiar with KSL, you can write your own scripts to create reports and
utilities. Once a KSL script is defined it can be reused.

NOTE
Many of the functions performed using KSL can now be performed more easily and
efficiently using CTMAPI and IOAAPI. For more information on CTMAPI refer to the
CONTROL-M for z/OS User Guide. For more information on IOAAPI refer to the
INCONTROL for z/OS Administrator Guide. BMC Software recommends that you use
CTMAPI and IOAAPI instead to KSL whenever possible.

Activating KeyStroke Language Scripts

18 KeyStroke Language (KSL) User Guide

Activating KeyStroke Language Scripts
The IOARKSL procedure activates KeyStroke Language scripts, either as a standard
batch execution or as a started task.

KSL scripts can be activated at any time, even if the monitors are not active.

Standard batch execution example

The following are the basic DD statements you can use with the IOARKSL procedure.

Started task example

S IOARKSL,PARM='scriptname script-parameters'

Return codes for the IOAKRKSL procedure

//KSL EXEC IOARKSL
//DAKSLPRM DD *
 parameters
//

Statement Description

//DAKSLPRM DD The script input parameters. Record length must be 80.
Columns 73 through 80 are ignored.

//DAKSLOUT DD A listing of all invoked command members and error and
execution messages. When TRACE ON is activated, it
contains a listing of all executed commands and screen
images of all input and output screen functions performed
during script execution.

//DAKSLREP DD Script output.

//DACALL DD Name of the library containing KSL script members (for the
CALLMEM command). Multiple libraries can be
concatenated.

Code Description

0 Ended OK

8 Error in input parameters

12 Severe execution error

other Generated by the script

Principles of Operation

Chapter 1 Using KeyStroke Language (KSL) 19

Principles of Operation
KSL is composed of screen control commands and editing commands. Screen control
commands correspond to operations of the terminal keys. Editing commands are
required to edit the printed page.

At the beginning of a script, you are positioned in the on-line field of the IOA Primary
Option menu. If the IOA entry panel is mandatory at your site, you are positioned at
the entry panel and you should include commands that enter your user ID and
password first.

The following is an example of a KSL script that prints the contents of a specific job
scheduling definition is illustrated below:

TYPE '2'
ENTER
TYPE 'DPTT.CTM.SCHEDULE'
CURSOR NEWLINE
TYPE 'APD'
CURSOR NEWLINE
TYPE 'APDP0020'
ENTER
PRINTSCREEN 3 23
END

This script produces a printout of the first screen of the job scheduling definition. The
following explains each step of the above example.

Table 1 Step-by-Step Explanation of Script Example (part 1 of 2)

Command Description

TYPE '2' Equivalent to typing option 2 in the IOA Primary
Option menu.

ENTER Equivalent to pressing Enter on your terminal.
As a result, you are “entering” the Online
Scheduling Facility entry panel.

TYPE 'DPTT.CTM.SCHEDULE On entry to the screen, the cursor is always
positioned on the library name field. Type the
scheduling library name.

CURSOR NEWLINE The cursor moves to the table name field.

TYPE 'APD' Type the scheduling table name.

CURSOR NEWLINE The cursor moves to the job name field.

TYPE 'APDP0020' Type the job name.

Principles of Operation

20 KeyStroke Language (KSL) User Guide

A KSL script is a representation of your keystrokes while you are working with the
Online facility. Everything that you can display on the screen, you can print. Every
selection criterion that can be applied online can be applied in batch mode. The same
language is used to work on the screen and on the output of the KSL script.

Modifying scripts

An important advantage of using KSL is that once a script is created, it can be stored
in a member in a library. This enables requests to be submitted in batch mode as often
as required (daily, weekly, monthly, and so on), and during off-peak hours not
convenient for online requests.

The following example expands the previous script into a more general purpose
script.

TYPE '2'
ENTER
TYPE 'DPTT.CTM.SCHEDULE'
CURSOR NEWLINE
TYPE 'APD'
CURSOR NEWLINE
TYPE 'APDP0020'
ENTER
LABEL PRTSCR

*Define a label to which we can later branch from another command (GOTO).
PRINTSCREEN 3 23
CURSOR POS 23 2

*Position the cursor on the last line of the job’s data on the screen.
IFSCREEN ' ' GOTO ENDREPORT
IFSCREEN '======= >' GOTO ENDREPORT

*If the last line of data on the screen is either blank or the end-of-data message, do
*not print any more job data.

CURSOR HOME
*Position the cursor on the Command field in the screen.

PF08
*Scroll down one more page.

GOTO PRTSCR

ENTER The job scheduling definition for the specified job
is displayed in the Job Scheduling Definition
screen.

PRINTSCREEN 3 23 The contents of the screen from line 3 through 23
are printed.

END End of report.

Table 1 Step-by-Step Explanation of Script Example (part 2 of 2)

Command Description

Principles of Operation

Chapter 1 Using KeyStroke Language (KSL) 21

*Go to label PRTSCR and print the screen (loop again).
LABEL ENDREPORT
END

This script is easy to define, but filling in a different library, table name or job name
each time you want to print a job scheduling definition is awkward.

It would be much easier if you could supply the library name, table name and job
name at the time the script is executed.

Scripts can be defined with special variables (for example, %A1, %A2, described later
in this chapter) instead of “hard-coded” values. When activating the script, the values
for the special variables can be passed as parameters.

 In the following example, special variable %A3 represents the job name, %A2
represents the table name, and %A1 represents the library name. Other features, such
as a header for the report produced by this script, are also presented.

HEADERSIZE 5
BOTTOMSIZE 1
HEADERLINE 3 1 'SCHEDULE DEFINITION OF JOB'
HEADERLINE 3 28 '%A3'
HEADERLINE 3 38 'TABLE'
HEADERLINE 3 48 '%A2'
HEADERLINE 3 58 'LIBRARY'
HEADERLINE 3 68 '%A1'
HEADERLINE 4 1 '-------------------------'
HEADERLINE 5
TYPE '2'
ENTER
TYPE '%A1'
CURSOR BTAB
CURSOR NEWLINE
TYPE '%A2'
CURSOR BTAB
CURSOR NEWLINE
TYPE '%A3'
ENTER
LABEL PRTSCR
PRINTSCREEN 3 23
CURSOR POS 23 2
IFSCREEN ' ' GOTO ENDREPORT
IFSCREEN '======= >' GOTO ENDREPORT
CURSOR HOME
PF08
GOTO PRTSCR
LABEL ENDREPORT
PF03
PF03

Language Syntax

22 KeyStroke Language (KSL) User Guide

PF03
RETURN

Assume that the above script is kept in the REPJOB member. You can produce a
printout of two jobs from a scheduling library by the following request:

Language Syntax
■ A command line is processed from column 1 to 72. A command cannot exceed

column 72. Columns 73 to 80 are ignored.

■ A command line can contain all blanks.

■ A command line with * in column 1 is considered a remark.

■ Each line in a script can optionally have one continuation line. To add a
continuation line, place an asterisk (*) in column 72 of the initial line.

■ A KSL variable must start with the character % and can be 2 through 40 characters
long. A blank designates the end of the variable name.

■ KSL variables are only accessible by the KSL script in which they are defined. Any
reference to the same variable in another command member (or in another
invocation of the same command member) is totally independent and has no effect
on the current member environment.

■ The value of an AutoEdit variable applies in all command members invoked by a
KSL script.

■ To share information between a KSL script and other command members invoked
in the same KSL run, either store the information in local AutoEdit variables, or
specify the relevant information using the CALL, CALLMEM, or EXEC command.

■ Values for the variables %A1 through %A9 (arguments) cannot be set by the
SETVAR command. They can only be specified as parameters of a CALLMEM
command.

■ Special variables %RC and %MSG are also valid during the same invocation of a
command member. Therefore, if you use the SETVAR command to assign a value
to the variable %RC and then execute RETURN, the value of the variable is lost.

//KSL EXEC IOARKSL
 CALLMEM REPJOB DPTT.CTM.SCHEDULE APD APDP0020
 CALLMEM REPJOB DPTT.CTM.SCHEDULE APD APDP0035
 END

Special considerations

Chapter 1 Using KeyStroke Language (KSL) 23

■ Special AutoEdit variables and functions must start with characters %%$. They are
set using command SETOLOC and are resolved according to the same rules that
apply to the IOA AutoEdit facility.

■ When an expression contains both KSL and special AutoEdit variables and
functions, the KSL variables are resolved first.

A label is valid through the same invocation of a command member. Any reference to
the same label in another command member (or in another invocation of the same
command member) is totally independent and has no effect on the current member
environment.

■ The IOA KSL and SAMPLE libraries contain general purpose command members
that can be used to solve typical report functions (for example, scroll and print).

■ BMC Software recommends that you active the TRACE ON command when
performing an update function with the KeyStroke Language. It is also more
convenient to write new reports with the TRACE ON.

■ KSL scripts may not work in a customized environment. For this reason, it is
highly recommended that you run KSL using backup libraries that specify the
default values for the IOA environment.

Special considerations
Mixed case characters - The CONTROL-M Active Environment screen (screen 3)
supports mixed case (uppercase and lowercase) characters. KSL also supports mixed
case characters for this screen, and product-supplied scripts have been updated
accordingly.

If you are using a modified script, or a script that does not support mixed-case
characters, BMC Software recommends that you change your KSL scripts to be mixed
case compatible. As an alternative, you may change the format of the screen to
uppercase only in the $$ACT member in the IOA MSG library, but changing the
screen might affect the performance of other KSLs.

KSL and customized screens - The performance or the accuracy of the output
produced by a KSL script may be affected if you have customized the IOA screens in
certain ways.

NOTE
KSL and CONTROL-M have different AutoEdit processors. Therefore, if a KSL script
containing KSL AutoEdit terms is submitted under CONTROL-M, the CONTROL-M
AutoEdit %%RANGE statement must be used in the JCL to ensure that the
CONTROL-M AutoEdit processor skips (that is, it does not process) the KSL script.

Special considerations

24 KeyStroke Language (KSL) User Guide

For example, if you change the OWNER field in the Job Scheduling Definition screen
(Screen 2), to a protected field (from its default status as an unprotected field), KSL
REPCTRDF will no longer operate correctly.

KSL script authorization - If the script is to execute successfully, the user submitting
a KSL script must be authorized to perform the Online functions performed by the
script.

Chapter 2 KSL commands and variables 25

C h a p t e r 2
2 KSL commands and variables

This chapter describes commands and variables used in KSL scripts.

Commands . 25
Variables . 36
Special KSL Variables . 36

Commands

Certain commands accept KSL and/or AutoEdit variables. When both KSL and
AutoEdit variables are specified, KSL variables are resolved (replaced) first.

Table 2 KSL Screen Commands (part 1 of 2)

Command Description

CLEAR Equivalent to pressing the Clear key on the keyboard.

CURSOR Depending on the parameters listed below, CURSOR
moves the cursor to the

■ BTAB — Beginning of the previous unprotected input
field on the screen.

■ HOME — First unprotected input field on the screen.
■ NEWLINE — First unprotected input field that

appears on the line following the current cursor
position line.

■ POS line-no col-no — Specific position on the screen.
line- no and col-no can contain constants, or any valid
expression consisting of KSL variables and/or
AutoEdit variables.

■ TAB — Beginning of the next unprotected input field
on the screen.

ENTER Equivalent to pressing the Enter key on the keyboard.

Commands

26 KeyStroke Language (KSL) User Guide

FIND{‘textstring’|expression} Searches for text on the screen from the current position of
the cursor. If the text is found, the cursor is positioned at
the beginning of the text. For more information, see special
variable %FINDRC, described in Table 6 on page 36.

■ textstring — A character string constant. When
specifying constants, quotes are not necessary unless
spaces are embedded in textstring. To specify a quote
inside the text, use two consecutive single quotes.

■ expression — Any expression consisting of constants,
KSL variables, and/or AutoEdit variables.

PA01-PA03 Equivalent to pressing program attention keys on the
keyboard.

PF01-PF24 Equivalent to pressing program function keys on the
keyboard.

SCREENSIZE line-no col-no Defines the logical terminal size.
Valid terminal sizes are:

■ 24 lines x 80 columns (Default)
■ 32 lines x 80 columns
■ 43 lines x 80 columns
■ 27 lines x 132 columns

TYPE{‘textstring’ | expression} Operates the keyboard by “typing” the text on the screen from
the current position of the cursor. If the text is too long for the
current data field, an error message is produced and the script
stops executing.

■ textstring — A character string constant. When specifying a
constant, the text must be enclosed in single quotes (‘’). To
specify a quote inside the text, use two consecutive single
quotes.

■ expression — Any valid expression consisting of KSL
variables and/or AutoEdit variables. The expression must be
enclosed in single quotes (‘’).

Table 2 KSL Screen Commands (part 2 of 2)

Command Description

Commands

Chapter 2 KSL commands and variables 27

Table 3 KSL Flow Commands (part 1 of 4)

Command Description

CALL progname [argument1 argument2
... argumentn]

Calls an external program (progname). The arguments are
optional. A maximum of nine arguments can be passed. Use
command CALL when the called program expects to receive a
list of parameters. The parameters are passed in a format
compatible with ASSEMBLER, COBOL and FORTRAN.

■ progname — Name of the called program. progname can
consist of a constant, or may contain any valid KSL and/or
AutoEdit expression.

■ argumentx — Any text (not containing blanks), constant, KSL
variable, or AutoEdit variable to be sent to the called
program. (The variable data can contain blanks.)

Note: The return code of the called program is stored in
special variable %CALLRC, which is described in Table 6
on page 36.

CALLMEM memname [argument1
argument2 ... argumentn]

Calls a predefined KSL script that is located in the member
memname in the library allocated to the DACALL
DD statement. The arguments are optional. A maximum of
nine arguments can be passed.

Note: The return code of the called program is stored in
special variable %CALLRC, which is described in Table 6
on page 36.

END Indicates the end of the KSL script. This is a mandatory
command in the main script commands list. When
activated at any level, the script is terminated.

EXEC progname [argument1 argument2
... argumentn]

Calls an external program (progname). The arguments are
optional. A maximum of nine arguments can be passed. Use
command EXEC when the called program expects to receive an
argument in a format similar to JCL’s EXEC PGM argument
format. (All arguments are merged into a single argument.)

■ progname — Name of the called program. progname can
consist of a constant, or can contain any valid KSL and/or
AutoEdit expression.

■ arguments — Text to be passed to the called program. An
argument can consist of any text (not containing blanks), a
constant, or a KSL and/or AutoEdit variable. (The variable
data can contain blanks.)

(Described later in this chapter).

Note: The return code of the called program is stored in
variable %CALLRC, which is described in Table 6 on
page 36.

Commands

28 KeyStroke Language (KSL) User Guide

GOTO label_name Branches to the specified label name, which must be in the
same command member.
If all parts of the conditional expression evaluate to true, script
flow branches to the specified label name, which must be in the
same command member. A parameter cannot be specified more
than once within the same conditional expression.

Each part of the conditional expression is true if the:

■ ‘textstring’ — Text on the screen at the current cursor
position is equal to the specified text. The text must be
enclosed in single quotes (‘’). To specify a quote inside the
text, use two consecutive single quotes.

■ ‘expression’ — Text on the screen at the current cursor
position is equal to the specified expression. expression can
be any expression consisting of KSL variables and/or
AutoEdit variables. expression must be enclosed in single
quotes.

■ COLOR col — Color of the screen at the current cursor
position is equal to the specified color (col). Valid col values
are:

— WHITE
— GREEN
— RED
— BLUE
— PINK
— YELLOW
— TURQUOISE
— NOCOLOR

Table 3 KSL Flow Commands (part 2 of 4)

Command Description

IFSCREEN

' textstring'
' expression'
COLOR col
ATTR attr
HILITE hilite
BEEP

 GOTO label

Commands

Chapter 2 KSL commands and variables 29

IFSCREEN

(continued)

■ ATTR attr — Screen attribute at the current cursor position is
equal to the specified attribute (attr). Valid attr values are:

— U — Unprotected
— P — Protected
— L — Low
— H — High
— D — Dark
— N — Numeric
— S — Skipped
— UL — Unprotected and low
— UH — Unprotected and high
— UD — Unprotected and dark
— NL — Numeric and low
— NH — Numeric and high
— ND — Numeric and dark
— PL — Protected and low
— PH — Protected and high
— PD — Protected and dark
— SPL — Skipped, protected and low
— SPH — Skipped, protected and high
— SPD — Skipped, protected and dark

■ HILITE hilite — Highlight of the screen at the current cursor
position is equal to the hilite value specified. Valid hilite
values are:

— REVERSE — Reverse video
— USCORE — Underline
— BLINK — Blink
— NONE — No highlight

■ BEEP— Terminal beep

Table 3 KSL Flow Commands (part 3 of 4)

Command Description

Commands

30 KeyStroke Language (KSL) User Guide

IFVAR operand operator
operand GOTO labname

Where:

■ operand is a KSL variable or constant and/or AutoEdit
variable. Constants must be enclosed in single quotes.

■ operator is one of the following operators. Used to compare
the specified operands.

EQ — is equal to
NE — is not equal to
GT — is greater than
GE — is greater than or equal to
LT — is less than
LE — is less than or equal to

■ labname—Label name to which script branches.
Specified using command LABEL (described below).

Note: Operands are compared as character strings from
left to right. For example, 91 is greater than 1000, because 9
is greater than 1.
IFVAR is used together with command GOTO to permit
branching based on different runtime conditions. If the
condition is true, flow branches to the specified label name
(must be in the same command member).

LABEL name Defines a label to which script flow can branch.

MAXCOMMAND number number is the maximum number of commands that can be
executed in the script. Default: 400. This is designed to
prevent an accidental loop.

PAUSE n Where n= hundredths of seconds. Causes the script to
“wait” the specified amount of time.

RETURN [return-code] Returns to the calling script.
return-code must be a number from 0 through 4095. When
command RETURN is activated, control is passed to the
command after the CALLMEM command in the calling
member. The variable %CALLRC in the calling member is
set to the value of the return code. Default: 0.

Table 3 KSL Flow Commands (part 4 of 4)

Command Description

Commands

Chapter 2 KSL commands and variables 31

Table 4 KSL Print Commands (part 1 of 2)

Command Description

BOTTOMLINE line-no pos-in-line
{‘textstring’|varname}

Assigns contents to a line in the page footer. The footer contents
are valid throughout the script until overridden by another
BOTTOMLINE command for the same line in overlapping
positions. Command BOTTOMSIZE overrides the current
BOTTOMLINE specifications.

■ line-no is the relative number of the line in the footer.

■ pos-in-line is the relative position in the line in the footer.

■ ‘textstring’ must be enclosed in single quotes (‘’). To specify a
quote inside the text, use two consecutive single quotes.

■ varname is a valid KSL variable.

BOTTOMSIZE line-no Specifies the number of lines in the report bottom (footer)
(1 minimum – 15 maximum). The bottom size is valid
throughout the script until a new BOTTOMSIZE command
is activated.

HEADERLINE line-no pos-in-line
{‘textstring’|varname}

Assigns contents to a line in the page header. The header
contents are valid throughout the script until overridden by
another HEADERLINE command for the same line in
overlapping positions. Command HEADERSIZE overrides the
current HEADERLINE specifications.

■ line-no is the relative number of the line in the header.

■ pos-in-line is the relative position in the line in the header.

■ ‘textstring’ must be enclosed in single quotes (‘’). To specify a
quote inside text, use two consecutive single quotes.

■ varname is a valid KSL variable.

HEADERSIZE line-no Specifies the number of lines in the report header (1
minimum – 15 maximum). The header size is valid
throughout the script until a new HEADERSIZE command
is activated.

PAGESIZE line-no col-no Defines the maximum size of a printed page.

■ line-no is the number of lines in the page. Default: 60.

■ col-no is the column number. In the current version, the
column number must be 132.

PRINTLINE line-no Prints the contents of the line identified by line-no (a
number from 1 through 9999).

Commands

32 KeyStroke Language (KSL) User Guide

PRINTNEWPAGE Skips to a new page.
Each occurrence of command PRINTNEWPAGE in a KSL
script must be preceded by commands SCREENSIZE,
PAGESIZE, HEADERSIZE and BOTTOMSIZE.

PRINTSCREEN from-line until-line Prints the screen contents of the specified line range.

■ from-line — The first line of screen contents to be printed.

■ until-line — The last line of screen contents to be printed.

SETLINE identifier pos-in-line font
{‘textstring’|varname}

Assigns contents to a line that is about to be printed.

■ identifier is the number (from 1 through 9999) that identifies a
line.

■ pos-in-line is the number that identifies a position in the line.

■ ‘textstring’ must be enclosed in single quotes (‘’). To specify a
quote inside the text, use two consecutive single quotes.

■ varname is a valid KSL variable.

TRACE {ON|OFF} Simplifies problem resolution using the TRACE (debug) facility
while defining a script.

■ ON — Produces a complete printed output of every
command execution, screen I/O, and command member
invocation. It is highly recommended that KSL utilities that
are performing updates of any database operate with
TRACE ON to simplify problem resolution. Command
TRACE can be activated any number of times within a script
to turn on/off the TRACE facility.

■ OFF — Does not produce a printed output. Default.

Table 4 KSL Print Commands (part 2 of 2)

Command Description

Commands

Chapter 2 KSL commands and variables 33

Table 5 KSL Processing Commands (part 1 of 3)

Command Description

ALLOC DD ddname DS dsname[MEM
memname][{SHR|OLD|MOD}]

Dynamically allocates the data set dsname to the specified
DD name.

■ memname – Member name for PDS members. Mandatory for
PDS members. Must be left blank for non-PDS members.
memname can be any valid member name consisting of a
constant, KSL variable, or AutoEdit variable.

■ ddname – Any DD name consisting of a constant, KSL
variable, or AutoEdit variable.

■ dsname – Any data set name consisting of a constant or KSL
variable.

■ SHR, OLD, MOD – Specify the data set disposition. Optional.
Default is SHR.

Before a data set can be accessed (for example, with
OPENFILE, GETFILE), it must be allocated and assigned a
DD name. Similarly, when the data set no longer needs to
be accessed, the data set and DD name must be released
(for more information, see command FREE in this table).
This DD name is local to the script that creates it.

CLOSEFILE ddname Closes sequential data set ddname.
ddname is any DD name consisting of a constant, KSL
variable, or AutoEdit variable.

FREE DD ddname Dynamically frees the data set allocated to the specified
DD name. (The DD name is assigned by command
ALLOC.) Activate this command when a data set no
longer needs to be accessed by the script.

GETFILE ddname INTO varname Stores in the specified variable the contents of the next record in
the sequential file referenced by ddname, where

■ ddname is any DD name consisting of a constant, KSL
variable, or AutoEdit variable.

■ varname is a KSL variable name where contents are stored.

Commands

34 KeyStroke Language (KSL) User Guide

Opens sequential data set ddname for access.

■ ddname is any DD name consisting of a constant, KSL
variable, or AutoEdit variable.

■ INPUT opens the sequential data set as a read-only file. No
changes can be made to the file.

■ OUTPUT allows data to be written to the file (write access).

■ UPDATE allows the file to be read and modified (read and
write access). Default.

■ ENDFILE label specifies a label name to which script
processing flow branches when the end of sequential data set
ddname is reached. ENDFILE is mandatory when ddname is
opened for INPUT or UPDATE access.

PUTFILE ddname FROM varname Writes the contents of variable varname in the next record of the
sequential file referenced by ddname.

■ ddname is any DD name consisting of a constant, KSL
variable, and/or AutoEdit variables.

■ varname specifies a KSL variable whose contents are written.

Note: AutoEdit variables (that is, variables beginning %%)
cannot be used with a PUTFILE command. Instead, such a
variable must be passed to a KSL variable (that is, a
variable beginning with a single %). The KSL variable
must be specified in the PUTFILE command.

Assigns the appropriate value to the variable name. This
command is used to create (set) a global AutoEdit variable.
expression may contain a KSL variable.

Note: This command is only available if CONTROL-O is
installed at your site. Global AutoEdit variables can only
be used when the CONTROL-O monitor is online. For
further information, see the DO SET statement in the
CONTROL-O User Guide.

Assigns the value of the expression to the variable name.
This command is used to create (set) a Local AutoEdit
variable. expression may contain a KSL variable.

Table 5 KSL Processing Commands (part 2 of 3)

Command Description

[]OPENFILE ddname
INPUT
OUTPUT
UPDATE

 ENDFILE label

SETOGLB
%%var = value
%%var = expression
%%autoedit - control - statement

SETOLOC
%%var = value
%%var = expression
%%autoedit - control - statement

Commands

Chapter 2 KSL commands and variables 35

SETVAR varname CURSOR length Assigns extracted text to variable varname. This command is
used to create (set) variables.

■ varname is the name of the KSL variable in which the text is
stored.

■ length is the length (in characters) of the extracted text. The
text at the current cursor position of the specified length is
extracted and assigned to the variable name.

SETVAR varname
DATA{‘textstring’|expression}

Assigns a text string to variable varname. This command is used
to create (set) variables.

■ varname is the name of the KSL variable in which the text is
stored.

■ ‘textstring’ is the textstring assigned to the variable name.
textstring is a character string constant. When specifying a
constant, the text must be enclosed in single quotes (‘’). To
specify a quote in the text, type two consecutive single
quotes.

■ expression is any valid expression containing KSL variables
and/or AutoEdit symbols. expression must be enclosed in
single quotes if it contains embedded blanks.

SETVAR varname SCREEN from-line
from-col length

Assigns extracted text to variable varname. This command is
used to create (set) variables.

■ varname is the name of KSL variable in which the text is
stored.

Variable value is determined by the screen contents at a specific
screen position. The screen position is specified by:

■ from-line – Starting from this line position, screen contents
are extracted.

■ from-col – Starting from this column position, screen contents
are extracted.

■ length – The number of characters) in the extracted text.

SHOUT TO destination [URGENCY
urgency] TEXT {textstring|expression}

Sends (“shouts”) textstring to the specified destination.

■ destination – a 1 through 16 character destination. For
valid destination values, refer to the description of the
SHOUT parameter in the CONTROL-M for z/OS User
Guide.

Table 5 KSL Processing Commands (part 3 of 3)

Command Description

Variables

36 KeyStroke Language (KSL) User Guide

Variables

KSL variables can be used to add flexibility to a KSL script. These variables are
assigned using a KSL command (such as SETVAR) and are resolved during the run of
the KSL script.

A KSL variable must start with % and can be 2 through 40 characters long. A blank
designates the end of the variable name.

KSL variables are only accessible by the KSL script in which they are defined. A
reference to the same variable in another command member (or in another invocation
of the same command member) is totally independent and has no effect on the
current member environment.

When an expression contains both KSL and special AutoEdit variables and functions,
KSL variables are resolved first.

For more information about syntax and KSL variables, see “Language Syntax” on
page 22.

Special KSL Variables

Some KSL variables are reserved by, and have a special meaning for, KSL:

NOTE
The second character in a KSL variable name must not be a percent sign. KSL assumes
that a variable beginning with %% is an AutoEdit variable.

If a KSL script is to search for a prerequisite condition whose name begins with a
single percent sign (%), KSL assumes it is a KSL user-defined variable and does not
recognize the searched-for condition.

Table 6 Special KSL Variables (part 1 of 2)

Variable Description

%A1-%A9 Passes the specified arguments to a called script. The number
corresponds to the position of the argument in command
CALLMEM. The argument is replaced throughout the called
script member at invocation time.

%CALLRC Contains the return code specified in the RETURN command
when returning from command CALLMEM. Also contains the
return code from programs called by the CALL or EXEC
commands.

Special KSL Variables

Chapter 2 KSL commands and variables 37

%FINDRC Provides the return code of the result of the last FIND. If the
last FIND was successful, has a value of 0. If the last FIND was
unsuccessful, %FINDRC has a value of 4.

%MSG Specifies text assigned at script termination, which appears as
a message in the job’s SYSLOG and the script execution listing.
Only the value of variable %MSG at the script member issuing
command END is displayed.

%RC Supplies the return code of the script. The value at successful
script termination is the condition code of the step. Valid
values are: 0 through 4095.

%SCRCOL Current column position of the cursor.

%SCRLINE Current line position of the cursor.

Table 6 Special KSL Variables (part 2 of 2)

Variable Description

Special KSL Variables

38 KeyStroke Language (KSL) User Guide

Chapter 3 KeyStroke OpenAccess (KOA) 39

C h a p t e r 3
3 KeyStroke OpenAccess (KOA)

The KeyStroke OpenAccess facility (KOA) permits two-way communication between
CONTROL-O and any VTAM application. Examples of VTAM applications are
performance monitors, online systems, and so on. Information can be collected from
these applications and used as part of the CONTROL-O decision process. Commands
under these applications can also be triggered based on CONTROL-O rules. The
possible uses of KOA include:

KOA Language Overview . 40
KOA Logic . 40
Principles of Operation. 43
Sample KOA Scripts and Reports . 48
Activating the KOA Language . 48
KOA Commands and Variables Summary . 49
KOA Commands and Variables . 50

KOA Implementation Considerations . 54
Session Characteristics . 54
Initiating a Session. 55
Exchanging Messages . 56
Terminating a Session . 57
Unexpected Messages . 59
AutoRefresh Handling . 60
Using KOA to Access the IOA Online Facility . 61
Working with CONTROL-O AutoEdit Variables. 62
Exception Handling. 63
Communicating With CONTROL-O . 64
Using a Preset KOA Environment . 66
Preset Environments and Batch Jobs . 69
Updating KOA Scripts Requiring a Preset Environment . 69
Testing a Script. 70

KOA Recording . 70
KOA Recorder Screen . 71
Sample Output Script . 72

■ Acquiring performance data from online performance monitors (for example,
OMEGAMON or MV Manager for INCONTROL) and reacting to the acquired
data.

KOA Language Overview

40 KeyStroke Language (KSL) User Guide

■ Logging on to problem management systems to open or update problem tickets.

■ Logging on to electronic mail systems and sending alert messages to Customer
Support.

■ Logging on to online communication systems (for example, CICS, IMS/DC,
IDMS/DC, COM-PLETE) to verify the availability and serviceability of online
systems and their applications.

■ Logging on to the IOA Online facility (using the IOA VTAM monitor).

■ Logging on to online communication systems to activate facilities.

■ Logging on to VM, as well as its operator ID.

■ Logging on to network management products (such as NetView).

An open interface to VTAM applications is an integral part of CONTROL-O as a
console automation product. The KeyStroke OpenAccess facility uses the same syntax
and the same concepts as the standard IOA KeyStroke Language (KSL). Therefore,
the same language and syntax can be used both for accessing VTAM applications and
for reporting. The KeyStroke OpenAccess facility simulates the keystrokes of a user
working in VTAM application screens the same way KSL does for users working in
IOA screens. Extended AutoEdit capabilities allow communication between
CONTROL-O/KOA and VTAM applications.

KOA Language Overview
The KOA language commands form a “superset” (extended version) of the KSL
language commands. All KSL commands and parameters are included in the KOA
language, but in addition, KOA includes communication commands that provide and
control access to VTAM applications.

KOA syntax is the same as the syntax for KSL, which is described earlier in this
chapter. KOA commands are described in detail later in this chapter.

KOA Logic

KOA commands are combined and stored in scripts. When the script is activated,
KOA processes the commands listed in the script. A typical script initiates a session
with a VTAM application, and includes the following basic steps:

KOA Logic

Chapter 3 KeyStroke OpenAccess (KOA) 41

Session Logon

KOA runs as a VTAM application, which emulates a terminal (according to specified
parameters) and establishes a session with the VTAM application through the
LOGON command.

Session Processing

The script runs, performing tasks – such as extracting and saving data from an online
application; running reports; and sending (“shouting”) messages to various
destinations.

Session Logoff

The VTAM application session is disconnected through the LOGOFF command.

With KOA, several VTAM application sessions can be active at the same time. A
unique session identifier is assigned to each session, so that a KOA script can switch
back and forth between active sessions.

KOA Logic

42 KeyStroke Language (KSL) User Guide

Figure 1 VTAM Session LOGOFF

Two-way communication is established and maintained throughout a VTAM
application session. An implied “send and receive” relationship forms the basis of
communication – for every keyboard input that is sent by KOA, a matching response
is received from the VTAM application. For example, KOA transmits (sends) the PF01
key command, and the VTAM application responds by displaying help information.

This two-way communication represents the default method of exchanging
information between KOA and VTAM. The KOA language also contains commands
that allow you to change this method. For example, updated screens from the VTAM
application can be received repeatedly without KOA first sending a request.

For information about creating and running scripts, see “Activating the KOA
Language” on page 48.

Principles of Operation

Chapter 3 KeyStroke OpenAccess (KOA) 43

Principles of Operation

KOA scripts can be generated automatically by the KOA Recorder, which is
described in “KOA Recording” on page 70, or manually, as described below.

To manually write a script, imagine yourself in front of a terminal that is connected to
VTAM only – for example, the opening screen that you receive when your terminal is
switched on. You are not yet connected to any specific application. You must then log
on to an application.

To explain how the script language works, we will use simplified examples of KOA
scripts.

Example 1

The following KOA script logs on to CICS and prints all open data sets.

Figure 2 KOA Script – Example 1

A detailed explanation of each step in the above sample script is shown below:

LOGON APPLID CICSP SESSID CICP
LABEL CHECK
CURSOR POS 1 15
IFSCREEN `WELCOME TO CICS/MVS’ GOTO CONTINUE
GETSCREEN
GOTO CHECK
LABEL CONTINUE
CLEAR
TYPE `CEMT INQUIRE DATASET(*) OPEN’
ENTER
PRINTSCREEN 1 24
PF03
CLEAR
TYPE `CSSF LOGOFF’
ENTER
LOGOFF
END

Table 7 KOA Script – Example 1 Explanation (part 1 of 2)

Step Description

LOGON APPLID CICSP SESSID CICP Issue a command to log on to application
CICSP, assigning session name CICP to
this session.

LABEL CHECK Specify label CHECK for script flow
branching purposes. This reference point
marks the portion of the script that checks
if the logon to CICS is successful.

Principles of Operation

44 KeyStroke Language (KSL) User Guide

As you can see, the KOA script is actually a representation of the keystrokes that are
entered while working with a VTAM application. Everything that can be seen on the
screen can be printed; and any keystroke that can be performed on a terminal can be
performed by KOA.

CURSOR POS 1 15 Position the screen cursor at row 1, column
15. If the logon was successful, CICS’s
welcome message is displayed at this
screen position.

IFSCREEN ‘WELCOME TO CICS/MVS’ GOTO
CONTINUE

Determine if the CICS/MVS welcome
message is currently displayed. If
displayed, proceed to label CONTINUE. If
not, proceed to the next script command.

GETSCREEN Receive (accept) any available messages.
This is a test to see if the CICS welcome
message has been sent.

GOTO CHECK Proceed to label CHECK to continue
testing for the CICS welcome message.

LABEL CONTINUE Specify label CONTINUE for script
branching purposes. Script flow continues
here when the logon to CICS is successful.

CLEAR Clear the screen.

TYPE ‘CEMT INQUIRE DATASET(*) OPEN’ Type the specified command at the
keyboard. This command displays all open
data sets.

ENTER Send the screen to CICS, and in response,
receive the CEMT screen back from CICS.

PRINTSCREEN 1 24 Print the contents of the screen from line 1
through line 24.

PF03 Equivalent to pressing the PF03 key, which
deactivates the CEMT command.

CLEAR Clear the screen.

TYPE ‘CSSF LOGOFF’ Issue CICS’s logoff command.

ENTER Equivalent to pressing Enter on the
terminal keyboard. You have now logged
off from CICS.

LOGOFF Issue KOA’s logoff command.

END Terminate the script.

Table 7 KOA Script – Example 1 Explanation (part 2 of 2)

Step Description

Principles of Operation

Chapter 3 KeyStroke OpenAccess (KOA) 45

Example 2

The following KOA script is activated by CONTROL-O when a console message
indicates that a production job that needs exclusive access is waiting for a reserved
data set. The script looks for all users (TSO users and jobs) currently using the data
set. If a TSO user is found, a message is sent to the user. Otherwise, a message is sent
to the production manager.

Assume that the rule that activates this script passes two arguments to the script:

Table 8 KOA Script – Example 2 Explanation (part 1 of 3)

Step Description

%A1 Data set needed by a production job
(%A2), currently reserved by other users
and jobs.

%A2 Job which needs exclusive access to a data
set (%A1).

ON SCREENERROR GOTO END If an exception occurs at any time during
script execution, proceed to label END,
which terminates the script.

LOGON APPLID OMEGAMON SESSID OM Log on to application OMEGAMON,
assigning session name OM to this session.

ENTER Equivalent to pressing Enter on the
keyboard. In this situation, Enter bypasses
the OMEGAMON opening screen.

CURSOR POS 1 2 Position the cursor on the screen.

TYPE ‘ZOPTEA’ Type OMEGAMON command ZOPTEA,
which lists display options on the screen.

ENTER Send the screen to OMEGAMON, and in
response, receive a screen from
OMEGAMON.

CURSOR POS 14 24 Position the cursor.

TYPE ‘CSR’ Type OMEGAMON command CSR to
change the scroll amount from page to
cursor. Changing the scroll amount to CSR
allows the script to scroll from a specific
cursor position, instead of screen by
screen.

ENTER Equivalent to pressing Enter on the
keyboard, thus sending the new scroll
amount.

CURSOR POS 2 1 Position the cursor.

TYPE ‘LOC %A1’ Type OMEGAMON command LOC,
which locates data set %A1 and lists the
users and jobs which are currently
accessing that data set (in either Shared or
Exclusive mode).

Principles of Operation

46 KeyStroke Language (KSL) User Guide

ENTER Send the previous command, to display
the user list.

CURSOR POS 3 1 Position the cursor.

IFSCREEN ‘+’ GOTO END If the value at the cursor position is +, this
indicates that message:

+ DSNAME _____ NOT CURRENTLY
ALLOCATED

is displayed. In this situation, the data set
is available, and the script should proceed
to label END. If the data set is allocated
(the message is not displayed), proceed to
the next script command.

CURSOR POS 4 1 Position the cursor.

PF08 Equivalent to pressing PFKey PF08 on the
keyboard. Pressing PF08 when scroll
amount CSR is specified shifts the list of
users up, so that the current cursor line is
displayed at the top of the screen.

LABEL LOOP Specify label LOOP to mark the portion of
the script that determines if any more data
set users exist.

CURSOR POS 2 1 Position the cursor.

SETVAR %START_OF_LINE
CURSOR 1

Save the current screen contents (one
character in length) to KOA variable
%START_OF_LINE. Note that if a user
exists, it is preceded by the symbol > on
the screen.

IFVAR %START_OF_LINE NE ‘>’ GOTO
END

If the value of variable %START_OF_LINE
is not equal to >, indicating that no more
users are accessing the data set, proceed to
label END (because there are no more
users to notify). If %START_OF_LINE is
equal to >, messages must be sent to the
appropriate users.

LABEL TSO-USER Specify label TSO-USER. This chapter of
the script determines if the user of the data
set is a TSO user.

SETVAR %TYPE SCREEN 2 26 3 Store screen contents (of the specified
position) in KOA variable %TYPE. If the
user is a TSO user, the current screen
contents contain TSO.

IFVAR %TYPE NE `TSO’ GOTO BAT-JOB If the value of variable %TYPE indicates
that the user is not a TSO user, proceed to
label BAT-JOB. If this user is a TSO user,
proceed to the next script command.

Table 8 KOA Script – Example 2 Explanation (part 2 of 3)

Step Description

Principles of Operation

Chapter 3 KeyStroke OpenAccess (KOA) 47

Because this script uses parameters (%A1 and %A2) instead of literal data set and job
names, the script is easy to invoke—just specify the appropriate information each
time the script is activated from within a rule.

SETVAR %USERNAME SCREEN 2 39 8 Store the TSO user name in KOA variable
%USERNAME.

SHOUT TO TSO-%USERNAME MESSAGE
‘PLEASE FREE FILE %A1 IMMEDIATELY’

Send a message (using the Shout facility) to
the TSO user %USERNAME. This message
asks the user to free data set %A1
immediately.

SHOUT TO TSO-%USERNAME MESSAGE
‘PRODUCTION JOB %A2 IS WAITING FOR
IT.’

Inform TSO user %USERNAME that %A1
must be freed so job %A2 can access the
data set.

GOTO CONTINUE Proceed to label CONTINUE.

LABEL BAT-JOB Specify label BAT-JOB to mark the portion
of the script that sends messages to the
production manager if the user currently
accessing the data set is a batch job.

SETVAR %TYPE SCREEN 2 26 3 Save the user type in variable %TYPE.

IFVAR %TYPE NE ‘BAT’ GOTO CONTINUE If the user is not a batch job, proceed to
label CONTINUE. If the user is a batch job,
process the following script commands.

SETVAR %JOBNAME SCREEN 2 39 8 Save the batch job name in variable
%JOBNAME.

SHOUT TO U-PRODMNGR MESSAGE ‘CTO
-PRODUCTION JOB %A2 WAITING FOR
FILES’

Send (shout) a message to U-PRODMNGR,
informing that job %A2 is waiting for data
set access.

SHOUT TO U-PRODMNGR MESSAGE ‘CTO
-FILE %A1 IS HELD BY JOB %JOBNAME’

Inform U-PRODMNGR (through the Shout
facility) that data set %A1 is accessed by
job %JOBNAME.

LABEL CONTINUE Specify label CONTINUE to mark the
portion of the script that repositions the
cursor to the next user in the user list.

CURSOR POS 3 1 Position the cursor.

PF08 Redisplay the user list starting with the
next line.

GOTO LOOP Proceed to label LOOP to process other
users holding the data set.

LABEL END Specify label END as a reference, marking
the end of the script.

LOGOFF Disconnect from VTAM application
OMEGAMON.

END Terminate the script.

Table 8 KOA Script – Example 2 Explanation (part 3 of 3)

Step Description

Sample KOA Scripts and Reports

48 KeyStroke Language (KSL) User Guide

Sample KOA Scripts and Reports

The IOA SAMPLE library contains examples of KOA scripts and KSL reports. Each
script and report invokes a few CALLMEM members to perform its functions.

Additional KOA samples are located in the CONTROL-O SolveWare libraries, and
described in the CONTROL-O SolveWare Reference Guide.

Activating the KOA Language

The following methods are available for activating KOA scripts:

Activate the script within a CONTROL-O rule.

Example

In the above example, CONTROL-O continues to process the rest of the rule while the
script is executing. This is the default method of script processing when activated by
a rule. The example below processes the script in a different manner.

Activate the script as a batch job. The script can also be activated under
CONTROL-M. The same method is used to run KSL reports.

Procedure IOARKOA is used to activate the KOA script. Important DD statements
are:

ON COMMAND ...
DO KSL=scriptname %%x %%y %%z
DO ...

DO SET=%%WAITKSL = YES
DO KSL=scriptname %%x %%y %%z
 WAITMODE x
DO IF %%KSLRC EQ 0
 DO ...
ENDIF

Table 9 IOARKOA Important DD Statements (part 1 of 2)

DD Statement Description

//DAKSLPRM DD Script parameters (input) – record length must be 80. (Columns
73-80 are ignored.)

//DAKSLOUT DD A listing of all invoked command members, and error/execution
messages. When TRACE ON is activated, it contains a listing of all
executed commands and screen images of all the input/output
screen functions performed during the script execution.

KOA Commands and Variables Summary

Chapter 3 KeyStroke OpenAccess (KOA) 49

Activate the script as a started task. Pass the script name and script parameters as
procedure parameters, using the following syntax:

S IOARKOA,PARM=`TRANID=KOA,scriptname script-parameters’

KOA Commands and Variables Summary

A brief summary of the KOA commands and variables is shown below. These
commands are in addition to the KSL commands discussed elsewhere in this chapter.

//DAREPORT DD A report, when created by KOA.

//DACALL DD PDS name containing script members (for command CALLMEM).
Multiple libraries can be concatenated.

Table 10 KOA Screen Commands

Command Description

ATTN Equivalent to pressing the Attn key on the keyboard.

CLEAR Equivalent to pressing the Clear key on the keyboard.

Table 11 KOA Flow Commands

Command Description

ON SCREENERROR Branches to a labeled script command when a communication
exception condition exists.

Table 12 KOA Communication Commands

Command Description

COLOR Sets the terminal’s color capabilities.

GETSCREEN Receives updated information (screens and messages) from the
VTAM application.

LOGON Logs on to a VTAM application session.

LOGOFF Logs off (disconnects) from a VTAM application session.

SCREENMODE Determines which screen types are received from VTAM.

SETSESS Switches to the specified session.

TIMEOUT Limits the number of seconds KOA waits for a response before
disconnecting the session.

Table 9 IOARKOA Important DD Statements (part 2 of 2)

DD Statement Description

KOA Commands and Variables

50 KeyStroke Language (KSL) User Guide

KOA Commands and Variables

The KOA commands and variables are described in greater detail below.

Braces ({ }) indicate that one of the items listed between the braces must be specified.
Square brackets ([]) denote optionality; none or several of the items listed between
the brackets can be specified.

Certain commands accept KOA and/or AutoEdit variables. When both KOA and
AutoEdit variables are specified, KOA variables are resolved (replaced) first.

KOA Commands

Table 13 KOA Special Variables

Variable Description

%SESSID Current session identifier.

%VTAMERR VTAM communication error description.

%VTAMFDBK VTAM communication error information.

%VTAMRC VTAM communication return code.

Table 14 KOA Screen Commands

Command Description

ATTN Equivalent to pressing the Attn key on the keyboard.

CLEAR Equivalent to pressing the Clear key on the keyboard.

Table 15 KOA Flow Commands

Command Description

ON SCREENERROR
[GOTO label]

Permits branching based on communication exception conditions.
An example of an exception is a VTAM application that does not
accept a logon command. This command can be activated any
number of times within a script to change the method of exception
handling. Each time command ON SCREENERROR is activated, the
previous setting is overridden. The new setting takes effect from the
point it is specified in the script onward.

GOTO The script flow branches to the specified label name (must be in the
same command member).
If no GOTO parameter is specified, no branching occurs.

KOA Commands and Variables

Chapter 3 KeyStroke OpenAccess (KOA) 51

Table 16 KOA Communication Commands (part 1 of 3)

Command Description

COLOR {ON|OFF} Specifies color and highlight capabilities of terminal emulation.
If LOGMODE is not specified when logging in to the VTAM
application, KOA uses this command to determine the terminal
emulation type. For more information see “KOA
Implementation Considerations” on page 54.

ON – Emulates a terminal which supports extended data
stream (colors and highlights).

OFF – Emulates a terminal which does not support extended
data stream (colors and highlights). Default.

GETSCREEN Instructs KOA to refresh the screen with updated information
from the VTAM application, without waiting for keyboard
input.

LOGON APPLID applid SESSID sessid
DATA data
LOGMODE logmode
TERMINAL terminal

KOA Commands and Variables

52 KeyStroke Language (KSL) User Guide

Logs on to a VTAM application. The APPLID and SESSID
parameters are mandatory. Other optional parameters (listed
below) can be specified to define terminal name and emulation
type.

■ APPLID applid – Specifies the name of the VTAM
application. applid can consist of a constant or can contain
any valid KOA or AutoEdit expression. Mandatory.

■ SESSID sessid – Specifies the 4-character, unique identifier
of the session. sessid is supplied by the user. Within the
same KOA script, a user can operate several active VTAM
application sessions concurrently. Therefore, each session
must have its own unique session ID. Mandatory.

■ DATA data – Passes data to the VTAM application as part
of the logon process (such as TSO user ID). If data contains
embedded blanks, it must be enclosed in single quotes. data
can consist of a constant, or can contain any valid KOA
and/or AutoEdit expression. Optional.

■ LOGMODE logmode – Defines terminal characteristics
(such as size or color) by specifying a predefined VTAM
logmode name. The logmode name must be 1-8 characters in
length. Optional.

If LOGMODE is not specified, KOA uses information
provided in commands COLOR and SCREENSIZE to find
a valid predefined logmode in CTOPARM which supports
these characteristics. For more information refer to “KOA
Implementation Considerations” later in this chapter.

■ TERMINAL terminal – Specifies a predefined VTAM
terminal (logical unit) name. The terminal name must be
1-8 characters in length. Optional.

If TERMINAL is not specified, KOA uses information
provided in member CTOPARM to dynamically select a
terminal name. For more information refer to “KOA
Implementation Considerations” later in this chapter.

LOGOFF Logs off or disconnects from the VTAM application.

Table 16 KOA Communication Commands (part 2 of 3)

Command Description

KOA Commands and Variables

Chapter 3 KeyStroke OpenAccess (KOA) 53

SCREENMODE
{UNLOCKED|ANY}

Indicates type of screens to be received by the KOA script. This
command can be activated any number of times within a script
to re-specify the screen mode.

■ UNLOCKED – Only unlocked screens (screens that allow
keyboard input) are received. This parameter ensures that
KOA is always able to send information back to the VTAM
application. Default.

■ ANY – Any screen (locked or unlocked) is received. KOA
may receive a screen which does not allow keyboard input.
However, KOA will not be able to respond to this type of
screen.

SCREENMODE
{RECEIVE|NORECEIVE}

Indicates if information (messages and screens) should be
received from the VTAM application. This command can be
activated any number of times within a script to re-specify the
screen mode.

■ RECEIVE – information is sent to and received from the
VTAM application. Each time KOA sends information to
the VTAM application, KOA waits for a response. Default.

■ NORECEIVE – Information is sent to the VTAM
application, but no response is received automatically. To
request a response in this mode, command GETSCREEN
should be used.

SCREENMODE
{GETUNSOL|IGNUNSOL}

Indicates type of information (messages and screens) to be
received from the VTAM application. This command can be
activated any number of times within a script to respecify the
screen mode.

■ GETUNSOL – Both solicited and unsolicited messages and
screens are received from the VTAM application and can
be displayed (by command GETSCREEN).

■ IGNUNSOL – Unsolicited information (that is, messages
and screens which are not expected by KOA) are ignored,
and are not displayed. Default.

SETSESS sessid Switches (shifts) to the session with the specified session ID.

TIMEOUT value Specifies how many seconds KOA should wait for a response
from the VTAM application before disconnecting the session. If
not specified, the default value (as specified in the
CONTROL-O Installation Parameters) determines the
TIMEOUT value.

Table 16 KOA Communication Commands (part 3 of 3)

Command Description

KOA Implementation Considerations

54 KeyStroke Language (KSL) User Guide

KOA Special Variables

KOA Implementation Considerations
VTAM application programs (for example, TSO, CICS, IMS/DC, OMEGAMON)
communicate using Logical Units. A Logical Unit (LU) is any item that is used to send
information to, and receive information from, VTAM application programs. Standard
examples of LUs are terminals and terminal emulation programs. The KOA facility
initiates VTAM application sessions and communicates with VTAM applications as if
it were a terminal. Therefore, KOA can perform any action that a terminal can
perform.

For information on installing the KOA facility, see the INCONTROL for z/OS
Installation Guide.

Session Characteristics

When a Logical Unit (LU) starts a session (LOGON), it provides a set of parameters
that identify the LU to the VTAM application. The parameters include screen size;
ability to display extended data stream (such as color or highlights); and other
parameters that determine session protocol. Parameters describing the screen in a
VTAM session are grouped into a LOGMODE entry. LOGMODE entries are, in turn,
stored in LOGMODE tables.

KOA emulates different types of terminals according to user specifications. The KOA
language provides commands such as SCREENSIZE and COLOR for automatic
selection of LOGMODE entries from a predefined list (which is created during KOA
installation). Four different terminal sizes are currently available, and each size may
or may not support extended data stream.

Table 17 KOA Special Variables

Variable Description

%SESSID ID of the current session.

%VTAMERR Describes briefly the VTAM communication return code %VTAMRC
(see below). For a list of VTAM session return codes see Appendix B,
“KOA VTAM Exception Codes.”

%VTAMFDBK Specifies VTAM communication-specific error information. For a list
of VTAM communication errors see Appendix B, “KOA VTAM
Exception Codes.”

%VTAMRC Specifies the VTAM communication return code. A value of 0
indicates a successful operation. For a list of VTAM session return
codes see Appendix B, “KOA VTAM Exception Codes.”

Initiating a Session

Chapter 3 KeyStroke OpenAccess (KOA) 55

You can override the KOA-selected LOGMODE by specifying the LOGMODE
parameter of command LOGON. In this case, LOGMODE (and not the commands
SCREENSIZE and COLOR) determines terminal characteristics.

Certain online systems (such as IMS/DC and, optionally, CICS) require that LUs be
predefined, and that they be stored in internal tables. Each definition in the table
contains the name and characteristic for that LU. When logging on to these online
systems, the LOGMODE information is ignored and the predefined values are used.
In this case, the SCREENSIZE, COLOR and LOGMODE commands and parameters
have no effect.

Initiating a Session

A session between a terminal and a VTAM application is initiated by logging on to
the application and specifying the name (as defined to VTAM) of the requested
VTAM application. KOA command LOGON performs exactly the same function. In
addition, for each session that is initiated, KOA selects a terminal name (which is
used during communication with the VTAM application). This terminal name is
dynamically selected from a predefined pool of terminal names as defined in member
CTOPARM.

The TERMINAL parameter of command LOGON can be used to force a specific
terminal name for the session. This may be useful when the VTAM application
performs security checks based on terminal name.

As part of the logon process, the LU can pass information (messages) to the VTAM
application. For example, the user ID can be passed to TSO. The DATA parameter of
command LOGON performs this function.

NOTE
When a session is initiated, the VTAM application usually sends the first message (for
example, a welcome message or a sign-on screen). Therefore, after a session is initiated, KOA
expects to receive a message from the application. However, there are applications that expect
the first message to come from the terminal (LU) instead. For these cases, the command
SCREENMODE NORECEIVE should be specified before command LOGON, and KOA
should be the first to send a message after the logon process is completed.

As part of session initiation, the VTAM application and the LU may exchange certain
information before the first screen is sent. For example, the application may require the
specification of physical terminal characteristics (for example, screen size or screen display
data type) before sending the first screen. Although this has no effect on a user working with a
standard terminal (because this message switching is very quick), the KOA script must
provide for these situations.

Exchanging Messages

56 KeyStroke Language (KSL) User Guide

Most cases are handled automatically, and KOA receives the first screen immediately
following command LOGON. However, in certain situations the user receives an
“empty” screen (or several “empty” screens) before the expected first screen. Scripts
must be designed to handle these situations.

Example

The following sample script logs on to CICS. This script is designed to handle the
receipt of empty screens.

Exchanging Messages

KOA expects to receive a screen (information) back from a VTAM application each
time a screen is sent to the application. This implied send and receive method of
exchanging information is the default method of communication between KOA and
VTAM. This means that whenever a screen is sent to the VTAM application (such as
through ENTER, ATTN, CLEAR, or PFxx), KOA automatically performs a receive
operation in order to receive an updated screen from the application. (Note that the
same process is automatically performed after the logon process completes.) From the
point of view of the script, the current screen is the application’s response to the
previously sent screen.

Table 18 KOA Sample Script to Log on to CICS

Step Description

LOGON APPLID CICSPROD SESSID CICS Log on to application CICSPROD, and
name the session CICS.

LABEL FIRSTSCR Specify label FIRSTSCR for script flow
branching purposes.

CURSOR POS 1 5 Position the cursor at line 1, column
position 5.

IFSCREEN `WELCOME TO CICS’ GOTO
CONTINUE

Determine if the CICS welcome message is
currently displayed. If displayed, proceed
to label CONTINUE. If not, proceed to the
next script command.

GETSCREEN Assume that an “empty” screen has been
received, and request the next message or
screen from the VTAM application.

GOTO FIRSTSCR Branch back to label FIRSTSCR to test the
current screen until the CICS welcome
message is displayed.

LABEL CONTINUE Specify label CONTINUE for script flow
branching purposes.

Terminating a Session

Chapter 3 KeyStroke OpenAccess (KOA) 57

To eliminate the implied receive and override the default method, command
SCREENMODE NORECEIVE should be used (the default is SCREENMODE
RECEIVE). In NORECEIVE mode, KOA does not wait for responses from the VTAM
application, and the script continues processing. When operating in NORECEIVE
mode, KOA command GETSCREEN should be specified in order to receive a
message from the VTAM application.

The KOA default method of exchanging information ensures that, at any stage, the
script operates on a screen that is ready to receive input (that is, the VTAM
application is waiting for input). For example, when a user communicates with an
application, the keyboard is always unlocked (reset) so the user can enter data. KOA
scripts must operate under similar conditions. To guarantee these conditions, KOA
repeatedly receives messages from the application – until a message is received
indicating that the application is now waiting for input from the LU.

Some situations require a different method of exchanging information. For example, a
KOA script can determine independently if or when to send data to – or request
additional messages from – the VTAM application. This method may be required for
situations where the application sends messages at fixed intervals, without first
unlocking the screen. To choose this mode of information exchange, command
SCREENMODE ANY should be used (the default is SCREENMODE UNLOCKED).
More complex KOA scripts must be written to facilitate this method of exchanging
information.

When the current KOA SCREENMODE is ANY, a message may not be “sendable” to
the application because the screen (keyboard) is locked. A user at a terminal, in this
situation, simply presses the attention key and waits until the keyboard is unlocked.
In KOA, command ATTN sends an attention request to the application, and receives
an unlocked screen from the application.

Terminating a Session

Two different methods exist for terminating a session between a user’s terminal and a
VTAM application:

Application logoff

Issue a (VTAM application) command to terminate the session. For example, /RCL
(in IMS/DC), CESF LOGOFF (in CICS), and LOGOFF (in TSO) instruct the
application to terminate the session, and free the terminal for other usage. This is the
proper method for requesting session termination from the VTAM application.

Terminating a Session

58 KeyStroke Language (KSL) User Guide

VTAM logoff

Use the keyboard SysRq (System Request) function or simply switch off the terminal.
This will probably free the terminal for other usage, but might not close the
application session properly. For example, a TSO session will not be terminated, but
is available for a reconnect from another terminal.

KOA supports both methods of session termination. It is recommended that both
methods be specified within the script. KOA scripts should terminate the session with
an ‘application logoff’ and then use the KOA command LOGOFF to perform a
`VTAM logoff’ which releases the terminal for use.

For example, to terminate a CICS session:

When a session is terminated in an orderly way, the application usually sends an
“end-of-session” message (such as when TSO sends an IKJ56470I message) and then
releases the terminal. Using the default method of information exchange (implied
send/receive), KOA receives that message, and supplies a return code to the script
that indicates that the session is no longer active. The script can either handle that
return code while it is terminating the session, or ignore (not receive) the last message
from the application.

For example, terminate a TSO session:

Table 19 KOA Sample Script to Terminate a CICS Session

Command Explanation

SCREENMODE NORECEIVE Change the screen emulation to NORECEIVE.

TYPE `CESF LOGOFF’ Type CICS command LOGOFF at the keyboard.

ENTER Send the command to CICS.

LOGOFF Issue the KOA LOGOFF command to disconnect the session.

Table 20 KOA Sample Script to Terminate a TSO Session

Command Explanation

TYPE `LOGOFF’ Type the TSO LOGOFF command at the
keyboard.

ENTER Send the command to TSO.

IFVAR %VTAMERR NE `SESS-NOT-ACT’
GOTO CHKERR

Verify that the TSO session is not active. If
it is still active, branch to label CHKERR
(not included in this sample) for error
processing. If the TSO session is not active,
proceed to the next script command.

LOGOFF Issue the KOA LOGOFF command to
disconnect the session.

Unexpected Messages

Chapter 3 KeyStroke OpenAccess (KOA) 59

Unexpected Messages

During a session between a VTAM application and a terminal, most received
messages are expected. For example, a user knows that pressing PF01 displays a Help
screen. However, there are situations where unexpected messages (unsolicited
messages) are displayed on the terminal.

An example of an unexpected message is a message sent by the operator to a TSO
user. When the message is received, the user simply presses the Enter key and
continues working. Similarly, a KOA script can also handle unexpected messages,
and can continue processing based on the user’s specifications.

To handle unexpected messages, KOA is designed so that each time the script sends a
message to the application, it first checks if the VTAM application has sent a message
to KOA. A message to KOA is not expected at this time (because the script was about
to send its own message). The unexpected message is handled using one of the
methods listed below:

If the current SCREENMODE is IGNUNSOL (default), KOA ignores the unexpected
message and sends its own message to the application.

If the current SCREENMODE is GETUNSOL, KOA does not send its own message,
and returns to the script with an appropriate return code. Based on the return code,
the script determines whether to accept (with command GETSCREEN), or to ignore
the unexpected message (by sending the same message as before).

The sample script below illustrates the handling of unexpected messages during a
TSO session:

Table 21 KOA Sample Script to Handle Unexpected Messages During a TSO Session
(part 1 of 2)

Command Explanation

LABEL SENDISPF Specify label SENDISPF for script flow
branching purposes.

TYPE `ISPF’ Type the TSO command ISPF at the
keyboard.

ENTER Send the command.

IFVAR %VTAMERR NE `UNSOLMSG’ GOTO
CONTINUE

Determine if any unexpected messages
were received. If none were received,
proceed to label CONTINUE. If
unexpected messages were received,
proceed to the next script command.

GETSCREEN Receive (accept) the unexpected message.

CLEAR Clear the screen.

AutoRefresh Handling

60 KeyStroke Language (KSL) User Guide

AutoRefresh Handling

Several products (especially performance monitors) periodically refresh the terminal
screen without expecting input from the terminal. This automatic process
(AutoRefresh) does not conform to the default KOA information exchange method,
as explained in “Exchanging Messages” on page 56.

When a script sends a message to an application, KOA waits until a reply is received.
Once the reply is received, the script continues (according to the default method). In
order to receive a message from the application without first sending a message (as in
the AutoRefresh case), specify command GETSCREEN. This command instructs
KOA to receive any immediately available messages from the application. If no
messages are currently available, KOA does not wait for a message from the
application (as in the default method). Instead, KOA supplies a return code
indicating that no message is available. Before retrying the operation, KOA can be
instructed to either wait for a specific amount of time, or perform other actions.

The following example demonstrates AutoRefresh handling using OMEGAMON.
(Commands /AUPON and /AUPOFF are used to start and stop AutoRefresh.):

GOTO SENDISPF Branch back to label SENDISPF – try to
send command ISPF to TSO again.

You may need to implement a counter or
other mechanism to prevent an infinite
loop if the ISPF screen is never displayed.

LABEL CONTINUE Specify label CONTINUE for script flow
branching purposes.

Continue script processing.

Table 22 KOA Sample Script for Handling AutoRefresh using OMEGAMON
(part 1 of 2)

Command Explanation

TYPE `/AUPON’ Type the OMEGAMON command /AUPON
at the keyboard.

ENTER Send the command.

LABEL REFRESH Specify label REFRESH for script flow
branching purposes.

PAUSE 1000 Wait 10 seconds.

GETSCREEN Receive (accept) any available messages.

Table 21 KOA Sample Script to Handle Unexpected Messages During a TSO Session
(part 2 of 2)

Command Explanation

Using KOA to Access the IOA Online Facility

Chapter 3 KeyStroke OpenAccess (KOA) 61

Using KOA to Access the IOA Online Facility

The IOA Online facility can be activated under the VTAM environment, and is
therefore available for KOA processing.

Since KOA is basically an extension of KSL, every KSL script (with minor
modifications) can be run as a KOA script. This is achieved by including a few
communication commands in the script, as in the sample script (member
RUKORDER in IOA SAMPLE library) shown below:

IFVAR %VTAMERR EQ `NODATA’ GOTO
REFRESH

Determine if special variable %VTAMERR
indicates that no messages were available. If
no messages were available, proceed to label
REFRESH. If messages were available,
proceed to the next script command.

SETVAR %CPU SCREEN 7 12 2 Set variable %CPU to the two screen
characters at line 7, column 12. At this screen
position, CPU usage is displayed.

IFVAR %CPU LT 80 GOTO REFRESH If CPU usage (%CPU) is less than 80%,
branch to label REFRESH.

TYPE `/AUPOFF’ Type the OMEGAMON command /AUPOFF
at the keyboard.

ENTER Send the command.

Continue script processing.

NOTE
The IOA Online facility is also available under various online communication systems (for
example, CICS, IMS/DC, TSO). Therefore, KOA scripts can access the IOA Online
environment directly through these facilities.

Table 23 KOA Sample Script to Access the IOA Online Facility (part 1 of 2)

Command Explanation

KSL Commands:

TRACE OFF Turn the Trace facility off.

MAXCOMMAND 999999 Limit the number of times a command can be
executed to 999999.

CALLMEM SET2480 Call predefined KSL script SET2480, which
sets screen size.

Table 22 KOA Sample Script for Handling AutoRefresh using OMEGAMON
(part 2 of 2)

Command Explanation

Working with CONTROL-O AutoEdit Variables

62 KeyStroke Language (KSL) User Guide

Working with CONTROL-O AutoEdit Variables

The CONTROL-O AutoEdit facility is also available under KOA. All AutoEdit
functions available under CONTROL-O rules are supported. This expands the
versatility of KOA and provides an additional communication path (method of
sending information) to CONTROL-O. The following AutoEdit commands are
available:

SETOLOC %%cto-var = expression
SETOGLB %%cto-var = expression
SETVAR %koa-var DATA expression

where expression is any valid CONTROL-O AutoEdit expression, which may contain
KOA variables. KOA variables are resolved first.

Since KOA scripts can be executed independently of the CONTROL-O monitor, the
following restrictions apply:

■ Global variables can be used only when the CONTROL-O monitor is active.

■ A Global variable’s scope is limited to the CPU where the KOA script is running.

CALLMEM SET60132 Call predefined KSL script SET60132, which
sets page size.

KOA Communication Commands:

LOGON APPLID IOAVTAM SESSID IOA
DATA TMNK

Issue KOA command LOGON to log on to
application IOAVTAM – the IOA Online
environment. Call this session IOA and send
TMNK as data to the logon process.

KSL Script Call:

CALLMEM ORDERRUL RULORDER LIBRARY
RULNAME ODATE O

Call predefined KSL script ORDERRUL, and
pass arguments RULORDER, LIBRARY,
RULNAME, ODATE and O.

KOA Communication Command:

LOGOFF Disconnect from the IOA Online environment.

KSL Command:

END Terminate the script.

Table 23 KOA Sample Script to Access the IOA Online Facility (part 2 of 2)

Command Explanation

Exception Handling

Chapter 3 KeyStroke OpenAccess (KOA) 63

The following sample script illustrates the use of AutoEdit and KOA variables in a
KOA script. The script tracks the number of times CPU usage was higher than 90%
(according to information from a performance monitor).

Exception Handling

KOA scripts can communicate with any VTAM application that runs in the SNA
network. This type of operating environment is very dynamic, and various events can
occur during KOA operation. Therefore, scripts should be designed to handle
potential exceptions.

The KOA language supplies the following variables that provide the cause of an
exception:

Table 24 KOA Sample Script Using AutoEdit and KOA Variables

Command Explanation

SETVAR %CPU SCREEN 7 12 2 Set KOA variable %CPU to the two screen
characters at line 7, column 12. At this screen
position, CPU usage is displayed.

IFVAR %CPU LT 90 GOTO CHKAGAIN Determine if CPU usage (%CPU) is less than
90%. If less than 90%, proceed to label
CHKAGAIN. If not, proceed to the next script
command.

SETOLOC %%LOCCPU = %CPU Set local AutoEdit variable %%LOCCPU to the
value of KOA variable %CPU.

SETOGLB %%COUNT%%LOCCPU =
%%COUNT%%LOCCPU %%$PLUS 1

Increment global AutoEdit variable
%%COUNT%%LOCCPU, which tracks the
number of times CPU usage was 90% or
higher.

SETVAR %PRLINE DATA `%CPU
%%COUNT%%LOCCPU’

Set KOA variable %PRLINE to (variable
names) `%CPU %%COUNT%%LOCCPU’.
%PRLINE is used for printing purposes.

LABEL CHKAGAIN Specify label CHKAGAIN for script flow
branching purposes.

Continue script processing.

Table 25 KOA Exception Handling Variables

Variable Description

%VTAMRC Contains the error ID.

%VTAMERR Provides a short description of the error ID.

%VTAMFDBK Supplies VTAM return codes which explain the situation.

Communicating With CONTROL-O

64 KeyStroke Language (KSL) User Guide

To simplify script design, it is recommended that a general exception handling
section be included in the script. This section should establish exception handling
procedures for any possible exception, thus eliminating the need to check the result
(successful, or unsuccessful) of each individual communication operation.

Command ON SCREENERROR allows specification of a label to which script flow
branches if a communication operation is unsuccessful. Flow can be directed to
different exception handling sections throughout the script. This is achieved by
specifying different labels as parameters to command ON SCREENERROR at
different points in the script. A script can also execute without any exception
handling section (by specifying command ON SCREENERROR without parameters).
In this last case, no exception handling procedures are initiated when an exception
occurs.

The exception handling routine usually examines the three KOA variables listed
above to check the cause of the exception.

There are two exceptions that are not controlled by the general exception handling
section of a script:

When the session receives an unexpected (unsolicited) message, and command
SCREENMODE GETUNSOL was specified. In this case, KOA variable %VTAMERR
contains the value UNSOLMSG.

When command GETSCREEN is specified, but no data is available from the VTAM
application. In this case, KOA variable %VTAMERR contains the value NODATA.

For these two situations, design the script so that it checks return codes after each
communication operation.

Communicating With CONTROL-O

KOA scripts communicate with CONTROL-O using several methods:

KOA Parameters

A maximum of nine arguments can be included in a DO KSL statement. These
arguments are assigned to KOA variables %A1 through %A9 (where the first
argument is assigned to variable %A1, the second argument to %A2, and so on). For
more information see the DO KSL parameter in the CONTROL-O User Guide.

Communicating With CONTROL-O

Chapter 3 KeyStroke OpenAccess (KOA) 65

KOA Return Code

KOA scripts supply return codes through variable %RC. Return codes can be checked
by a CONTROL-O rule in the following way:

AutoEdit

CONTROL-O Global variables can be accessed or set by a KOA script. KOA
command SETOGLB sets Global variables. KOA commands that accept AutoEdit
expressions as parameters can access Global variables.

Local and System AutoEdit variables are normally only accessible in the KOA script.
However, when the WAITMODE subparameter is set to Y (Yes) and the SHARELOC
subparameter is set to Y (Yes) in a DO KSL statement, the calling rule’s Local and
System variable environments are shared with the KOA script.

Example

Figure 3 Example of CONTROL-O Global Variables Being Accessed or set by a KOA Script

Table 26 KOA Sample Script to Check KOA Return Codes

Command Explanation

DO KSL CICSTEST WAITMODE Y Execute KOA script CICSTEST and wait until
script execution is completed.

IF %%KSLRC EQ 0 Determine if variable %%KSLRC returns a
return code of 0, indicating that the KOA script
ended successfully. If successful, process the
following script commands. If not, skip the
following script commands.

DO ... Process these script commands.

ENDIF Indicate end of script commands relevant to
return code 0.

Using a Preset KOA Environment

66 KeyStroke Language (KSL) User Guide

Explanation

The above rule sets variable %%A to 1 and then calls script KOA1. KOA1 increments
that same variable by 1. When the rule then shouts the message (shown below), %%A
is resolved to 2:

CTO282I VALUE OF `A’ IS 2

Shout Facility

KOA’s SHOUT command allows a script to send messages to the console, TSO users,
or the IOA Log. Messages to the console can be specified to trigger CONTROL-O
rules.

Using a Preset KOA Environment

Execution of DO KSL statements can be optimized by indicating (in the INITPROC
subparameter) a script that handles a preset environment. In the text below, KOA
scripts for preset environments are discussed in detail.

For information about DO KSL statements see the DO KSL parameter in the
CONTROL-O User Guide. For server-related installation details see the INCONTROL
for z/OS Installation Guide.

The sample rule below invokes KOA script CICSINQ to check whether or not a data
set is open. If the data set is closed, the rule invokes script CICSOPEN to open the
data set. Script CICST specified in the INITPROC subparameter handles the preset
environment.

Note the following about the sample rule below:

■ IMMEDIATE–If scripts are to be executed by an Immediate server, specify Y (Yes)
in the IMMEDIATE subparameter.

■ INITPROC–If scripts are to be executed by a Special server, a Special server named
CICST must be defined to CONTROL-O.

If scripts are to be executed by a General server, either INITPROC should be blank or
there must not be a special server defined by the specified name (CICST).

Using a Preset KOA Environment

Chapter 3 KeyStroke OpenAccess (KOA) 67

Figure 4 Sample CONTROL-O for Optimizing DO KSL Statements using KOA Scripts

Figure 5 Sample KOA Script (CICST) invoked by CONTROL-O Rule Subparameter
INITPROC to handle the Preset Environment

Figure 6 Sample KOA Script (CICSINQ) invoked by CONTROL-O Rule to Check
whether a Data Set is Open

 RL: CICSOPEN LIB CTOW.WORKO.RULES TABLE: AA
COMMAND ===> SCROLL===> CRSR
--

ON COMMAND = CICSOPEN *
JNAME JTYPE SMFID SYSTEM USERID
ROUTE DESC CONSOLEID CONSOLE
APPEARED TIMES IN MINUTES And/Or/Not

OWNER IOAADMIN GROUP MODE PROD RUNTSEC
DESCRIPTION CHECK IF A FILE IS OPEN FOR CICS USAGE. IF NOT, OPEN IT
DESCRIPTION
===
/* GET THEFILENAME FROM THE COMMAND LINE
DO SET = %%FILE = %%$V2 GLOBAL N
DO
/* INVOKE KOA CICSINQ (CEMT INQUIRY FILE ())
DO KSL = CICSINQ %%FILE

WAITMODE Y TIMEOUT 9999 STOP Y
INITPROC CICST SHARELOC Y IMMEDIATE N

DO
/* IF NEEDED INVOKE KOA CICSOPEN (CEMT SET FILE() OPEN)
IF %%DSTATUS NE O
DO KSL = CICSOPEN %%FILE

WAITMODE Y TIMEOUT 9999 STOP Y
INITPROC CICST SHARELOC Y IMMEDIATE N

FILL IN RULE DEFINITION. CMDS: EDIT, SCHED, OPT, SHPF 07.55.22

IFVAR `%A1’ EQ INIT GOTO INIT
IFVAR `%A1’ EQ TERM GOTO TERM
IFVAR `%A1’ EQ RESET GOTO RESET
GOTO EXIT
LABEL INIT
LOGON APPLID CICSTEST SESSID CICS
CLEAR
GOTO EXIT
LABEL RESET
CLEAR
GOTO EXIT
LABEL TERM
SCREENMODE NORECEIVE
TYPE `CESF LOGOFF’
ENTER
LOGOFF
GOTO EXIT
LABEL EXIT
RETURN

TYPE `CEMT INQUIRY FILE(%A1)’
ENTER
SETVAR %STATUS SCREEN 3 22 1
SETOLOC %%DSTATUS = %STATUS
PF03
RETURN

Using a Preset KOA Environment

68 KeyStroke Language (KSL) User Guide

Figure 7 Sample KOA Script (CICOPEN) invoked by CONTROL-O Rule to Open a
Closed Data Set

Execution of the DO KSL statements mentioned in the above rule depends on which
type of server is used. Below is a step-by-step description of how these statements are
executed for each type of server.

TYPE `CEMT SET FILE(%A1) OPEN’
ENTER
PF03
RETURN

Table 27 Step-by-Step Description of DO KSL Statements in Sample CONTROL-O Rule

Rule Immediate Server General Server Special Server

DO KSL =
CICSINQ

1. An Immediate server is
created.

1. A General server is created
if one does not already exist.

1. A Special server is created
if one does not already exist
for the necessary
environment.

2. Server invokes CICST with
the INIT parameter.

2. Server invokes CICST with
the INIT parameter.

2. Server invokes CICST with
the INIT parameter.

3. Server invokes CICSINQ. 3. Server invokes CICSINQ. 3. Server invokes CICSINQ.

4. Server invokes CICST with
the RESET parameter.

4. Server invokes CICST with
the RESET parameter.

4. Server invokes CICST with
the RESET parameter.

5. Server invokes CICST with
the TERM parameter.

5. Server invokes CICST with
the TERM parameter.

5. Special server is ready for a
new request.

6. Immediate server is
terminated.

6. General server is ready for
a new request.

DO KSL =
CICSOPEN

1. An Immediate server is
created.

1. Server invokes CICSOPEN. 1. Server invokes CICSOPEN.

2. Server invokes CICST with
the INIT parameter.

2. Server invokes CICST with
the RESET parameter.

2. Server invokes CICST with
the RESET parameter.

3. Server invokes CICSOPEN. 3. Server invokes CICST with
the TERM parameter.

3. Special server is ready for a
new request.

4. Server invokes CICST with
the RESET parameter.

4. General server is ready for
a new request.

4. As the server is being shut
down, it invokes CICST with
the TERM parameter.

5. Server invokes CICST with
the TERM parameter.

6. Immediate server is
terminated.

Preset Environments and Batch Jobs

Chapter 3 KeyStroke OpenAccess (KOA) 69

Preset Environments and Batch Jobs

Before a KOA script designed for a preset environment can be executed, the preset
environment must be defined. To achieve this, CONTROL-O normally invokes the
necessary scripts to preset the environment. When a KOA script designed for a preset
environment is to be executed in batch, a controlling KOA script must be included to
simulate CONTROL-O actions. The controlling script invokes the scripts which create
and maintain the preset environment.

The following job contains a controlling KOA script. It invokes the same scripts
shown in the previous example.

Figure 8 Sample Job Containing a Controlling KOA Script

Updating KOA Scripts Requiring a Preset Environment

Servers executing DO KSL requests sequentially (that is, General and Special servers)
load the KOA script the first time it is executed. When the same KOA script is again
requested, the server does not reload the script, but instead uses the previously
loaded version from memory.

If a KOA script is updated, it is necessary to restart the server so that it is forced to
reload the scripts. A server can be restarted by the Server Status screen or by
specifying operator command:

F CONTROLO,SERVER=name,TERM

The server terminates, and restarts automatically upon the next DO KSL request.

//JOB1 JOB
//STEP0001 EXEC IOARKOA,OUTDUMP=X
//DAKSLPRM DD *
*
 SETVAR %FIL DATA `FILE1’
 CALLMEM CICST INIT
 CALLMEM CICSINQ %FIL
 CALLMEM CICST RESET
 IFVAR %%DSTATUS EQ `O’ GOTO SKIPOPEN
 CALLMEM CICSOPEN %FIL
 CALLMEM CICST RESET
LABEL SKIPOPEN
 CALLMEM CICST TERM
 END
*
//

Testing a Script

70 KeyStroke Language (KSL) User Guide

Testing a Script

When testing a KOA script, it may be necessary to make changes. To avoid restarting
a General or Special server after each change in the script:

Temporarily define the DO KSL statement with the IMMEDIATE subparameter set
to Y. This causes an Immediate server to be created for each request.

Test scripts by submitting them in batch jobs (described earlier in this chapter).

KOA Recording
The KOA Recorder facility, which is available under IOA TSO and IOA cross
memory, makes it easy to create KOA scripts. The KOA Recorder generates a script
by automatically recording your keystrokes and saving the keystrokes in a file. This
eliminates the need to write scripts manually and reduces the chance of error. You
can edit the file as necessary.

Scripts generated by the KOA Recorder can be submitted in the same way as
manually created scripts, that is, by using batch procedure IOARKOA.

The KOA facility is described in “KOA Recording” on page 70

To start the KOA Recorder, select Option OK, KOA RECORDER, on the IOA Primary
Option menu. The IOA KOA Recorder screen, which is illustrated in Figure 9, is
displayed.

NOTE
The KOA Recorder facility simulates a hardware terminal (SNA LUTYPE2) and
supports terminal models 2, 3, 4 and 5, with or without extended data stream
capabilities. Therefore, corresponding VTAM LOGMODEs should be used with the
KOA Recorder. Ensure that the LU for a VTAM logmode attribute used in the
recording session corresponds to the logmode of the recorded session. For more
information about defining VTAM LUs and logmodes, refer to the INCONTROL for
z/OS Administrator Guide.

KOA Recorder Screen

Chapter 3 KeyStroke OpenAccess (KOA) 71

KOA Recorder Screen

Figure 9 KOA Recorder Screen

To record a script, specify a value for each of the fields in Table 28.

To begin the actual recording, press Enter. Both the recording and the VTAM
application that you specified begin simultaneously.

----------------------------- IOA KOA RECORDER --------------------------(KR)
 COMMAND ===>

 SPECIFY THE FOLLOWING PARAMETERS:

 APPLICATION ===>
 LU NAME ===>
 LOGON DATA ===>
 SCRIPT FILE ===>

 USE THE COMMAND SHPF TO SEE PFK ASSIGNMENT

Table 28 Fields of the KOA Recorder Screen

Fields Description

APPLICATION VTAM application to be tested, such as TSO or CICS).

LU NAME Logical unit name associated with the application. Logical
units are defined in the CTOPARM member of the IOAPARM
installation library. Mandatory.

LOGON DATA Initial keystrokes to send to the application. These keystrokes
are usually a logon ID. Optional.

SCRIPT FILE PS file, or PDS library and member, in which the KOA
Recorder saves your keystrokes. Mandatory.

The script file must have an FB record format and a block size
of 3,120 bytes. If you specify an existing (preallocated) file, it is
overwritten. If the specified file does not exist, the KOA
Recorder will automatically create it.

Sample Output Script

72 KeyStroke Language (KSL) User Guide

When you quit your VTAM application (for example, in a TSO session, by typing
LOGOFF at the TSO READY prompt), the KOA Recorder stops recording, and the
KOA Recorder Screen reappears.

To leave the KOA Recorder screen, press PF03/PF15 (END).

Sample Output Script

The following is an example of steps performed by a user while the KOA Recorder is
in session. The KOA Recorder will record these steps as a script.

1 Display the Rule Definition Entry Panel.

2 Locate the DAILY table and select the DAILY rule.

3 Modify the DAILY rule so that MODE LOG is Y.

4 Exit the DAILY rule, exit the DAILY table, and save the updated rule.

5 Force the DAILY Rule table.

6 Display the Automation Log panel

7 Check that the DAILY rule was loaded and triggered.

8 Quit IOA.

9 Log off TSO and stop recording.

From these steps, the KOA Recorder generates the script shown in Figure 10.

Sample Output Script

Chapter 3 KeyStroke OpenAccess (KOA) 73

Figure 10 Sample KOA Output Script

 LOGON APPLID TSO SESSID RCRD TERMINAL KSLT0001
 TYPE 'N18A'
 ENTER
 TYPE 'N18 '
 ENTER
 TYPE 'OR '
 ENTER
 TYPE 'CTOP.PROD.RULES '
 ENTER
 TYPE 'L DAILY '
 ENTER
 TYPE 'S'
 ENTER
 CURSOR NEWLINE
 TYPE 'S'
 ENTER
 CURSOR POS 2 15
 TYPE 'F PROD '
 ENTER
 TYPE 'LROD'
 ENTER
 PF03
 PF03
 TYPE 'Y'
 ENTER
 TYPE 'F'
 ENTER
 TYPE 'Y'
 ENTER
 TYPE '=OL '
 ENTER
 TYPE 'F DAILY '
 ENTER
 PF08
 TYPE '=X '
 ENTER
 TYPE 'LOGOFF'
 ENTER
 END

Sample Output Script

74 KeyStroke Language (KSL) User Guide

Chapter 4 Using KSL with CONTROL-M/Restart 75

C h a p t e r 4
4 Using KSL with CONTROL-M/Restart

CONTROL-M/Restart provides several predefined KSL scripts as a utility for
producing reports. Descriptions and sample output of these reports are provided
below. The scripts are located in the IOA SAMPLE and KSL libraries and can be
modified according to your site requirements. The name of the member that contains
the script appears in parentheses below

Automatic Restart Definition utility (JCLCTRDF) . 75
Manual Restart Confirmation report (REP5MNCN) . 76
Restart detail report (REP5RSTR) . 77
Last Night Restart History report (REP3RSHS). 77
Restart Time Savings report (RPRSV). 79
Last Night SYSOUT Scan Summary report (REPJOBSY). 80

The central source of information for the reports is the IOA Log, which maintains an
audit trail of all job restart (CONTROL-M/Restart) events. Other relevant
information can come from the CONTROL-M Active Jobs file or from user scheduling
tables.

Automatic Restart Definition utility
(JCLCTRDF)

Basic restart definitions for jobs in existing scheduling tables do not need to be
manually entered. The JCLCTRDF KSL utility automatically generates basic restart
definitions for all jobs in a specified table. By using the JCLCTRDF utility, you can in
a matter of minutes implement basic restart definitions for CONTROL-M/Restart for
your entire site.

Specify the parameters described in Table 29 for the JCLCTRDF utility:

Manual Restart Confirmation report (REP5MNCN)

76 KeyStroke Language (KSL) User Guide

The following statements are added to the job scheduling definitions (if they are not
already there):

Manual Restart Confirmation report
(REP5MNCN)

The Manual Restart Confirmation report details restart jobs that were manually
released for execution using the CONTROL-M/Restart CONFIRM option within a
specified period (for example, week, month).

Figure 11 Manual Restart Confirmation report

Table 29 Parameters for Automatic Restart Definition utility (JCLCTRDF)

Parameter Description

library Library name. Must be a partitioned data set containing scheduling
tables

table Scheduling table name

confirm Determines the value of the CONFIRM parameter in the DO
IFRERUN statement for the job. Valid values are:

■ Y (Yes): Restart step with CONFIRM Y.
■ N (No): Restart step with CONFIRM N.

tasktype Specific task type, or ALL for all task types. (“Dummy” jobs are not
be updated.)

ON PGMST ANYSTEP PROCST CODES S*** U**** C2000 A/O
 DO IFRERUN FROM $ABEND . TO . CONFIRM N

NOTE
The CONFIRM field is assigned the value specified in the CONFIRM parameter in the
JCLCTRDF KSL utility.

BMC SOFTWARE, INC. IOA KEY-STROKE REPORTING LANGUAGE (VER 6.1.0)
DATE 09/09/00 PAGE 000001
 I O A - L O G - MANUAL RESTART CONFIRMATION REPORT FROM 090900 TO 090900
+--------+--------+----------+----------+---------+---
| DATE | TIME | USERID | JOBNAME | ODATE | MESSAGE
+--------+--------+----------+----------+---------+---
| 090900 | 084646 | PROD | PRODJOB1 | 090900 | RESTART CONFIRMED
| 090900 | 084824 | PROD | PRODJOB1 | 090900 | RESTART DECISION DELETED
| 090900 | 084825 | PROD | PRODJOB1 | 090900 | RESTART CONFIRMED
| 090900 | 084947 | GENERAL | PRODJOB1 | 090900 | MODIFIED FROM S030. TO. (ORDERID=000OL)
| 090900 | 085202 | PROD | PRODJOB2 | 090900 | RESTART CONFIRMED

Restart detail report (REP5RSTR)

Chapter 4 Using KSL with CONTROL-M/Restart 77

Restart detail report (REP5RSTR)
The Restart Detail report is a list of restart jobs executed over a particular period (for
example, daily, weekly). The listing displays restart job, restart step, use of
CONTROL-M/Restart CONFIRM option, and so on.

Figure 12 Restart Detail Report (REP5RSTR)

Last Night Restart History report (REP3RSHS)
The Last Night Restart History report provides a complete execution history of all
jobs that were restarted during the previous night. The report displays all successful
and unsuccessful restarts of the job. Job start time, end time and termination
condition codes are displayed. For each restart, the restart step of the job is also
displayed.

BMC SOFTWARE, INC. IOA KEY-STROKE REPORTING LANGUAGE (VER 6.1.0)
DATE 09/09/00 TIME 08.53 PAGE 000001

 I O A - L O G - RESTART DETAIL REPORT FROM 090900 TO 090900

+--------+--------+----------+----------+---------+---
-
| DATE | TIME | USERID | JOBNAME | ODATE | MESSAGE
+--------+--------+----------+----------+---------+---
-
| 090900 | 084646 | PROD | PRODJOB1 | 090900 | RESTART CONFIRMED
| 090900 | 084705 | PROD | PRODJOB1 | 090900 | RESTARTING FROM STEP S020. TO STEP S050.
| 090900 | 084824 | PROD | PRODJOB1 | 090900 | RESTART DECISION DELETED
| 090900 | 084825 | PROD | PRODJOB1 | 090900 | RESTART CONFIRMED
| 090900 | 084947 | GENERAL | PRODJOB1 | 090900 | MODIFIED FROM S030. TO. (ORDERID=000OL)
| 090900 | 085006 | PROD | PRODJOB1 | 090900 | RESTARTING FROM STEP S030. TO STEP S050.
| 090900 | 085202 | PROD | PRODJOB2 | 090900 | RESTART CONFIRMED
| 090900 | 085217 | PROD | PRODJOB2 | 090900 | RESTARTING FROM STEP S030. TO STEP S070.

Last Night Restart History report (REP3RSHS)

78 KeyStroke Language (KSL) User Guide

Figure 13 Last Night Restart History Report (REP3RSHS)

BMC SOFTWARE, INC. IOA KEY-STROKE REPORTING LANGUAGE (VER 6.1.0) DATE
09/09/00 TIME 08.53 PAGE 000001

 LAST NIGHT RESTART HISTORY REPORT
 =================================
 NAME USERID ODATE JOBNAME JOBID TYP --------- STATUS -----------
 PRODJOB1 PROD 090900 PRODJOB1/01242 JOB ENDED "OK" (RESTARTED) (RUN 4)

 DATE TIME ODATE USERID CODE ------ M E S S A G E --------------------

 090900 084505 090900 PROD JOB511I JOB PRODJOB1 ODATE 090900 ID=000OL TASK= M34 /FDSF - PLACED ON
AJF - PRODUCTION JOB NUMBER ONE
 090900 084509 090900 PROD SEL203I JOB PRODJOB1 ELIGIBLE FOR RUN
 090900 084511 090900 PROD SUB133I JOB PRODJOB1 PRODJOB1/01238 SUBMITTED
 090900 084520 090900 PROD SPY281I JOB PRODJOB1 PRODJOB1/01238 START 00253.0845 STOP 00253.0845
CPU 0MIN 00.05SEC SRB 0MIN 00.00SEC 0.02 1AFDSF
 090900 084521 090900 PROD SPY254I JOB PRODJOB1 PRODJOB1/01238 SCANNED
 090900 084521 090900 PROD SEL206W JOB PRODJOB1 PRODJOB1/01238 ABENDED CC S0C4 STEP S020
 090900 084521 090900 PROD SEL214I JOB PRODJOB1 PRODJOB1/01238 RERUN NEEDED
 090900 084521 090900 PROD SEL205I JOB PRODJOB1 PRODJOB1/01238 RERUN IN PROCESS USING MEM PRODJOB1
 090900 084521 090900 PROD SEL286I JOB PRODJOB1 PRODJOB1/01238 WAITING FOR CONFIRMATION
 090900 084651 090900 PROD SEL203I JOB PRODJOB1 ELIGIBLE FOR RUN
 090900 084652 090900 PROD SUB133I JOB PRODJOB1 PRODJOB1/01240 SUBMITTED
 090900 084705 090900 PROD CTR082I JOB PRODJOB1 PRODJOB1/01240 RESTARTING FROM STEP S020. TO STEP
S050.
 090900 084705 090996 PROD SPY281I JOB PRODJOB1 PRODJOB1/01240 START 00253.0846 STOP 00253.0846
CPU 0MIN 00.84SEC SRB 0MIN 00.03SEC 0.08 1AFDSF
 090900 084706 090900 PROD SPY254I JOB PRODJOB1 PRODJOB1/01240 SCANNED
 090900 084706 090900 PROD SEL206W JOB PRODJOB1 PRODJOB1/01240 ABENDED CC S0C7 STEP S040
 090900 084706 090900 PROD SEL214I JOB PRODJOB1 PRODJOB1/01240 RERUN NEEDED
 090900 084706 090900 PROD SEL205I JOB PRODJOB1 PRODJOB1/01240 RERUN IN PROCESS USING MEM PRODJOB1
 090900 084706 090900 PROD SEL286I JOB PRODJOB1 PRODJOB1/01240 WAITING FOR CONFIRMATION
 090900 084827 090900 PROD SEL203I JOB PRODJOB1 ELIGIBLE FOR RUN
 090900 084828 090900 PROD SUB133I JOB PRODJOB1 PRODJOB1/01241 SUBMITTED
 090900 084835 090900 PROD SPY281I JOB PRODJOB1 PRODJOB1/01241 START 00253.0848 STOP 00253.0848
CPU 0MIN 00.09SEC SRB 0MIN 00.00SEC 0.03 1AFDSF
 090900 084835 090900 PROD SPY254I JOB PRODJOB1 PRODJOB1/01241 SCANNED
 090900 084835 090900 PROD SEL206W JOB PRODJOB1 PRODJOB1/01241 ABENDED CC S0C7 STEP S040
 090900 084835 090900 PROD SEL214I JOB PRODJOB1 PRODJOB1/01241 RERUN NEEDED
 090900 084835 090900 PROD SEL215W JOB PRODJOB1 PRODJOB1/01241 NO (MORE) RERUNS
 090900 084951 090900 PROD SEL220I JOB PRODJOB1 WILL BE RERUN
 090900 084951 090900 PROD SEL203I JOB PRODJOB1 ELIGIBLE FOR RUN
 090900 084952 090900 PROD SUB133I JOB PRODJOB1 PRODJOB1/01242 SUBMITTED
 090900 085006 090900 PROD CTR082I JOB PRODJOB1 PRODJOB1/01242 RESTARTING FROM STEP S030. TO STEP
S050.
 090900 085006 090900 PROD SPY281I JOB PRODJOB1 PRODJOB1/01242 START 00253.0849 STOP 00253.0849
CPU 0MIN 02.05SEC SRB 0MIN 00.04SEC 0.10 1AFDSF
 090900 085006 090900 PROD SPY254I JOB PRODJOB1 PRODJOB1/01242 SCANNED
 090900 085006 060600 PROD SEL208I JOB PRODJOB1 PRODJOB1/01242 ENDED "OK"

Restart Time Savings report (RPRSV)

Chapter 4 Using KSL with CONTROL-M/Restart 79

Restart Time Savings report (RPRSV)
The Restart Time Savings report lists job restarts by CONTROL-M/Restart during the
specified period. For each listed job restart, the report provides general information
about the job and summary information about the execution time saved as a result of
using a restart under CONTROL-M/Restart instead of a job rerun. For each restart,
the report displays the number of steps skipped, the elapsed time saved, and the CPU
time saved.

Figure 14 Restart Time Savings report (RPRSV)

 BMC SOFTWARE, INC. IOA KEY-STROKE REPORTING LANGUAGE (VER 6.1.0)
 DATE 09/09/00 TIME 10.20 PAGE 000001

 * RESTART TIME SAVINGS REPORT *

 *** FROM DATE: 090800 TO DATE: 090900 ***

 +========+========+===========+=======+============+=========+=========+===========+
DATE	TIME	JOB	JOB	STEP	# OF	ELAPSED	CPU
		NAME	ID	NAME	SKIPPED	TIME	TIME
					STEPS	SAVED	SAVED
						(HH:MM)	(M:SS:HS)
+========+========+===========+=======+============+=========+=========+===========+							
090800	091657	R0014T01	02186	R0014T01	0	00:00	0:00:00
+--------+--------+-----------+-------+------------+---------+---------+-----------+							
090800	121834	R0006T01	02464	R0006T01	1	00:03	0:00:20
+--------+--------+-----------+-------+------------+---------+---------+-----------+							
090800	122656	R0007T01	02475	R0007T01	1	00:00	0:00:16
+--------+--------+-----------+-------+------------+---------+---------+-----------+							
090800	123215	R0008T01	02487	R0008T01	7	01:07	0:30:14
+--------+--------+-----------+-------+------------+---------+---------+-----------+							
090900	003818	R0009T01	03297	R0009T01	3	00:39	0:11:20
+--------+--------+-----------+-------+------------+---------+---------+-----------+							
090900	014309	R0010T01	03565	R0010T01	1	00:00	0:00:19
+--------+--------+-----------+-------+------------+---------+---------+-----------+							
090900	024911	R0011T01	03910	R0011T01	9	01:54	0:52:14
 +--------+--------+-----------+-------+------------+---------+---------+-----------+

 ******** END OF REPORT *********

Last Night SYSOUT Scan Summary report (REPJOBSY)

80 KeyStroke Language (KSL) User Guide

Last Night SYSOUT Scan Summary report
(REPJOBSY)

The Last Night SYSOUT Scan Summary report provides an execution history for jobs
with archived SYSOUTs that ran the previous night. Either the first archived
SYSOUT, or all archived SYSOUTs, can be displayed in the report for specified jobs
(or all jobs).

Figure 15 Last Night SYSOUT Scan Summary Report (REPJOBSY)

 BMC SOFTWARE, INC. IOA KEY-STROKE REPORTING LANGUAGE (VER 6.1.0) DATE 09/09/00
TIME 10.06 PAGE 000001

 LAST NIGHT SYSOUT SCAN SUMMARY REPORT
 =====================================

 ------------------------ CONTROL-M ACTIVE ENVIRONMENT ----------------------(3)
 COMMAND ===> SCROLL===> CRSR
 O NAME OWNER ODATE JOBNAME JOBID TYP --------- STATUS ----------- UP
 PRODJOB1 N15A 090900 PRODJOB1/29944 JOB ENDED "OK" (RESTARTED) (RUN 2)
 PRIOR RUN: ENDED- NOT "OK" - ABENDED
 ====== >>>>>>>>>>>>>>>>>>> BOTTOM OF ACTIVE JOBS LIST <<<<<<<<<<<<<<<<<< =====

 ------------------------ JOB ORDER EXECUTION HISTORY ---------------------(3.V)
 COMMAND ===> SCROLL===> CRSR
 MEMNAME PRODJOB1 OWNER N15A ORDERID 001UA ODATE 090900
 O JOBNAME JOBID DATE START ELAPSED PAGES MAX RC ---------- STATUS ----------
 PRODJOB1 29941 090900 10:04 0:03 00009 S0C4 ENDED- NOT "OK" - ABENDED
 PRODJOB1 29944 090900 10:05 0:16 00011 ENDED "OK" (RESTARTED)

 ======= >>>>>>>>>>> BOTTOM OF ACTIVE JOB ORDER HISTORY LIST <<<<<<<<<<< =======

 ------------- CONTROL-M/RESTART SYSOUT VIEWING ------ PAGE 1 OF 9
 COMMAND ===> SCROLL===> CRSR
 MEMNAME PRODJOB1 OWNER N15A JOBNAME PRODJOB1 ODATE 090900
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----
10
1 J E S 2 J O B L O G -- S Y S T E M E S A 1 -- N O D E N O D E 7
 0
 10.04.40 JOB29941 $HASP373 PRODJOB1 STARTED - INIT 3 - CLASS A - SYS ESA1
 10.04.40 JOB29941 IEF403I PRODJOB1 - STARTED - TIME=10.04.40
 10.04.42 JOB29941 PRODJOB1.IOATEST .#01; - COMPLETION CODE=0000
 10.04.43 JOB29941 IEF450I PRODJOB1 IOATEST S020 - ABEND=S0C4 U0000 REASON=00000000
 TIME=10.04.43
 10.04.43 JOB29941 PRODJOB1.IOATEST .#02; - COMPLETION CODE=S00C4 - ABENDED######
 10.04.43 JOB29941 PRODJOB1.IOATEST .#03; - COMPLETION CODE=NOT RUN 10.04.43 JOB29941
PRODJOB1.IOATEST .#04; - COMPLETION CODE=NOT RUN
 10.04.43 JOB29941 PRODJOB1.IOATEST .#05; - COMPLETION CODE=NOT RUN
 10.04.43 JOB29941 IEF404I PRODJOB1 - ENDED - TIME=10.04.43
 10.04.43 JOB29941 $HASP395 PRODJOB1 ENDED
 0------ JES2 JOB STATISTICS ------
 - 09 SEP 00 JOB EXECUTION DATE
 - 9 CARDS READ
 - 399 SYSOUT PRINT RECORDS
 - 0 SYSOUT PUNCH RECORDS
 - 33 SYSOUT SPOOL KBYTES
 - 0.05 MINUTES EXECUTION TIME

Appendix A AutoEdit Facility in KSL 81

A p p e n d i x A
A AutoEdit Facility in KSL

The AutoEdit facility provides additional data manipulation capabilities. It is
composed of the following types of AutoEdit symbols and instructions:

System Variables . 82
AutoEdit System Variables: . 82
User-Defined Variables. 84
Rules of Variable Substitution . 85
AutoEdit Operators . 87
%%$CALCDATE Function . 87
%%$SUBSTR Function . 88
%%$TIMEINT Function . 89
%%$PARSE Function . 89

■ System variables
■ user-defined variables
■ operators
■ functions

NOTE
KSL and CONTROL-M use different AutoEdit processors. Therefore, if a KSL script
containing KSL AutoEdit terms is submitted under CONTROL-M, the CONTROL-M
AutoEdit %%RANGE statement must be used in the JCL to ensure that the CONTROL-M
AutoEdit processor skips, that is, that it does not process, the KSL script.

System Variables

82 KeyStroke Language (KSL) User Guide

System Variables
System variables are predefined, commonly used variables whose values are
automatically updated and maintained by the AutoEdit facility.

The System variable format is:

where var represents the name of the System variable.

Each AutoEdit variable begins with “%%”. Each variable resolves to (is replaced by)
the corresponding system value. AutoEdit System variables are described on the
following pages.

Example

resolves on the 12th of December 2001 to

AutoEdit System Variables:

%%$var

TYPE '%%$DATE'

TYPE '011010'

NOTE
In the following table, the ◊ symbol following an AutoEdit System variable indicates that if the
variable is specified without the $ in the prefix, the variable is still supported.

Table 30 AutoEdit System Variables (part 1 of 3)

Variable Description

%%. ◊ Concatenation character

%%$BLANK ◊ Resolves to one blank

%%$BLANKn ◊ Resolves to n blanks, where n is a number between 1 and 99.

%%$D2X num Hexadecimal number resulting from the conversion of the
decimal number num. The largest number that can be
converted is 2147483647 (that is, 231 – 1).

For example: %%$D2X 4095 converts to ‘FFF’.

AutoEdit System Variables:

Appendix A AutoEdit Facility in KSL 83

%%$DATE ◊ Current system date (format yymmdd).

%%$DAY ◊ Current system day (format dd).

%%$JULDAY ◊ Current system day (Julian format jjj).

%%$LENGTH varname ◊ Length of variable varname.

%%$MONTH ◊ Current system month (format mm).

%%$MVSLEVEL MVS product version (eight characters) under which IOA is
running. Examples: SP3.1.1, SP4.2.2

%%$NULL ◊ Indicates a null variable (a variable with length 0).

%%$PARSRC Return code from a %%$PARSE function. Indicated whether
the parsed string matched all string patterns in the template.
Possible values are:

■ 0 – The parsed string fully matched the string patterns in
the template.

■ 4 – At least one string pattern in the template was not
matched.

%%$RDATE ◊ Current working date (format yymmdd).

%%$RDAY ◊ Current working day (format dd).

%%$RJULDAY ◊ Current working day of the year (Julian format jjj).

%%$RMONTH ◊ Current working month (format mm).

%%$RWDAY ◊ Current working day of the week. Format is d, where d is 1
through 6 or 0 (for example, 1=Sunday, 2=Monday, ...
6=Friday, 0=Saturday).

Note: Start of the week depends on an IOA installation
parameter specifying whether 1=Sunday or 1=Monday. For
your site standard, see your INCONTROL administrator.

%%$RYEAR ◊ Current working year (format yy).

%%$SMFID ◊ The SMF ID of the CPU running the KSL script.

%%$SSNAME ◊ Name of the IOA subsystem.

%%$SUBSTR varname pos len
◊

Substring of variable varname starting at position pos with
length len.

%%$TIME ◊ Time of day (format hhmmss).

%%$UNDEF ◊ Indicates an undefined variable. This variable can be used:

■ To test whether a variable is defined:
IF %%variable EQ %%$UNDEF

■ To delete a variable:
SETOLOC = %%variable = %%$UNDEF

Table 30 AutoEdit System Variables (part 2 of 3)

Variable Description

User-Defined Variables

84 KeyStroke Language (KSL) User Guide

User-Defined Variables

The user-defined variables capability is designed to provide additional flexibility.
You can define your own symbols using the KSL command SETOLOC and use them
in other KSL commands. They are automatically resolved when the KSL is executed.

A user-defined variable can be any alphanumeric string starting with %%. The
characters @ # $ _ are also valid. Lowercase characters are resolved, but upon
resolution they remain lowercase and are not translated to uppercase characters.

When the AutoEdit facility identifies a string that starts with %%, the string is
assumed to be an AutoEdit variable or instruction. If the string is a reserved AutoEdit
symbol or a System variable, it is interpreted as such. Otherwise the string is assumed
to be a user-defined variable.

%%$WDAY ◊ Current system day of the week. Format is d, where d is 1
through 6 or 0 (for example, 1=Sunday, 2=Monday, ...
6=Friday, 0=Saturday).

Note: Start of the week depends on an IOA installation
parameter specifying whether 1=Sunday or 1=Monday. For
your site standard, see your INCONTROL administrator.

%%$Wn varname ◊ The nth word (a comma or a blank can serve as a delimiter) of
variable varname. n can be a value from 1 through 99. For
example, %%$W3 %%MESSAGE represents the third word
in the original user-defined message text.

%%$WORDS varname ◊ Number of words in variable varname. Delimiters are
commas and/or blanks within the variable.

%%$X2D string Numeric decimal string resulting from the conversion of the
hexadecimal number string. The maximum number that can
be converted is 7FFFFFFF. Example: %%$X2D FFF converts
to ‘4095’.

%%$YEAR ◊ Current system year (format yy).

Table 30 AutoEdit System Variables (part 3 of 3)

Variable Description

Rules of Variable Substitution

Appendix A AutoEdit Facility in KSL 85

Rules of Variable Substitution

A KSL command can contain expressions including both KSL and AutoEdit variables.
Variable substitution is performed in the following order:

1. All KSL variables (variables preceded by a single % character) are substituted
sequentially from left to right.

Example

TYPE '%A %%$PLUS 1'

Assuming that the value of %A is 1, variable substitution begins with the KSL
variable substituted as follows:

TYPE '1 %%$PLUS 1'

2. If the resulting expression contains AutoEdit symbols (in this example,
%%$PLUS), variables are substituted sequentially from right to left until the
symbol is assigned a value.

In the above example, TYPE ‘1 %%$PLUS 1’ resolves to TYPE ‘2’.

The largest number that can be handled by mathematical AutoEdit operations is
231 - 1, that is, 2147483647.

Examples

The following are additional examples of AutoEdit variable substitution.

Example 1

resolves on the third of the month to:

The AutoEdit facility then tries to resolve the symbol %%SMF_TAPE_03. Assuming
the value of the symbol in the Global environment is EE1022, the result is:

EE1022

To concatenate two symbols, separate them with a period. Before AutoEdit variables
are concatenated, trailing blanks are eliminated.

%%SMF_TAPE_%%DAY,

%%SMF_TAPE_03,

Rules of Variable Substitution

86 KeyStroke Language (KSL) User Guide

Example 2

resolves on the 4th of December to:

0412

In order to put a period between two symbols, use two consecutive periods.

Example 3

resolves on the 4th of December to:

04.12

To concatenate a symbol and a constant, use %%. (concatenation symbol).

Example 4

resolves on the 4th of December to:

A9104UP

%%DAY.%%MONTH

NOTE
Specification of %%DAY%%MONTH would result in an attempt to resolve %%DAY12 (a
user-defined variable).

%%DAY..%%MONTH

A91%%DAY%%.UP

NOTE
Specification of A91%%DAYUP would result in an attempt to resolve %%DAYUP (a
user-defined variable).

AutoEdit Operators

Appendix A AutoEdit Facility in KSL 87

AutoEdit Operators

AutoEdit operators can be used in conjunction with AutoEdit symbols. Valid
AutoEdit operators are:

The format for use of AutoEdit symbols and operators is:

Only one operator can be used in an expression.

Operands must resolve into positive numeric constants. The final result is translated
into a character string. For example:

User-defined variable %%x is incremented by one.

%%$CALCDATE Function

The %%$CALCDATE function performs date calculations based on a specified date.
Format:

where:

■ date is the date in yymmdd format.
■ quantity is the number (or numeric AutoEdit expression) of days to add to or

subtract from the date (from 1 to 366).

Table 31 AutoEdit Operators

Operator Description

%%$PLUS Add two operands.

%%$MINUS Subtract the second operand from the first operand.

%%$TIMES Multiply one operand by another operand.

%%$DIV Divide the first operand by the second operand.

operand operator operand

SETOLOC %%x = %%x %%$PLUS 1

%%$CALCDATE date ± quantity

%%$SUBSTR Function

88 KeyStroke Language (KSL) User Guide

Example

On February 1, 2000:

%%$SUBSTR Function

The %%$SUBSTR function extracts a substring from the input string, and returns the
attached substring. Format:

where:

■ strng is the input string from which the substring is extracted.
■ startpos is the first character of the input string to extract.
■ len is the number of characters to extract.

startpos and len must be numbers (or numeric AutoEdit expressions) and greater than
zero.

If (startpos + len – 1) is greater than the strng length, the function is not executed and
the value returned is null.

Example

On December 1, 2000:

NOTE
%%$CALCDATE operates on Gregorian dates only; Julian dates, such as %%JULDAY, cannot
be specified.

SETOLOC %%A = %%$CALCDATE %%$RDATE -1

SETOLOC %%A = 000131

%%$SUBSTR strng startpos len

SETOLOC %%A = %%$CALCDATE %%$RDATE -1
SETOLOC %%AMON = %%$SUBSTR %%A 3 2

SETOLOC %%A = 001130
SETOLOC %%AMON = 11

%%$TIMEINT Function

Appendix A AutoEdit Facility in KSL 89

%%$TIMEINT Function

The %%$TIMEINT function calculates the time interval between two given times,
specified in any order.

Format:

time1 and time2 are constants or variables in yydddhhmmss format.

where:

■ yy is a 2-digit year
■ ddd is a Julian day
■ hh is the number of hours
■ mm is the number of minutes
■ ss is the number of seconds

The resulting time interval is in format:

■ ddddd is the number of days
■ hh is the number of hours
■ mm is the number of minutes
■ ss is the number of seconds

Example

The result is: 00001010000.

%%$PARSE Function

The %%$PARSE function is a powerful tool that offers extensive string manipulation
capabilities in the AutoEdit environment. This function, which is similar to the REXX
PARSE command in the TSO/E environment, can be used to analyze and extract
information from various AutoEdit strings.

%%$TIMEINT time1 time2

SETOLOC %%A = %%$TIMEINT 01120070000 01119060000

%%$PARSE Function

90 KeyStroke Language (KSL) User Guide

The %%$PARSE function parses a specified string, that is, the %%$PARSE function
splits the specified string into substrings, according to a specified template. A
template consists of variables and “patterns” that determine the parsing process.

Format:

where:

■ strng is the AutoEdit variable that contains the string to be parsed.
■ template is the AutoEdit variable or constant that contains the template.

Example

The %%$PARSE function assigns substrings of the specified string to the specified
variables according to the specified template.

The SETOLOC statements in the above example provide the same result as the
following statements:

The parsing process involves the following stages:

1. The string is broken into substrings, from left to right, using the patterns in the
template.

2. Each substring is parsed into words, from left to right, using the variable names in
the template.

Template elements are:

■ string patterns
■ position patterns
■ variables
■ place holders (dummy variables)

SETOLOC %%$PARSE strng template

SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%T = A1 A2 A3 A4 A5
SETOLOC %%$PARSE %%S %%T

SETOLOC %%A1 = THIS
SETOLOC %%A2 = IS
SETOLOC %%A3 = A
SETOLOC %%A4 = SAMPLE
SETOLOC %%A5 = STRING

%%$PARSE Function

Appendix A AutoEdit Facility in KSL 91

The rules of parsing are detailed below.

Parsing Words

Scanning is performed from left to right and words in the string, leading and trailing
blanks excluded, are matched one by one with the variables named in the template.
The last variable named in the template contains the remaining part of the string,
including leading and trailing blanks.

Up to 30 variable names can be specified in a parsing template.

The following situations may be encountered:

■ The number of words in the string matches the number of variables in the
template: Each of those variables contains one word of the string. The last variable
contains the last word in the string including leading and/or trailing blanks.

■ The number of words in the string is smaller than the number of variables named
in the template: The first variables each contain one word of the string and the
extra variables receive a value of NULL (a string of 0 character length).

■ The number of words in the string is greater than the number of variables in the
template. With the exception of the last, all variables contain one word of the
string. The last variable named in the template contains the remaining part of the
string, including leading and trailing blanks.

Example

The statements below, which include a %%$PARSE function:

have the same result as the following statements:

SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%T = A1 A2 A3
SETOLOC %%$PARSE %%S %%T

SETOLOC %%A1 = THIS
SETOLOC %%A2 = IS
SETOLOC %%A3 = A SAMPLE STRING

%%$PARSE Function

92 KeyStroke Language (KSL) User Guide

Using Dummy Variables (Place Holders)

A single period can be used as a dummy variable in the template. This is useful when
the corresponding word in the string does not need to be stored in a named variable.

Example

The following statements, which include a %%$PARSE function:

have the same result as the following statement:

Using Patterns in Parsing

Patterns can be included in the template. Their purpose is to divide the string into
substrings prior to the process of parsing into words. Parsing is then performed, as
previously described, on the substrings and not on the original string.

The following types of patterns are available:

■ string pattern, a character string delimited by quotes, to distinguish it from a
variable name

■ number, signed or unsigned

Using String Patterns

The string is scanned from left to right for a substring that matches the string pattern.

The following situations may occur:

1. A match is found, that is, a substring within the string is identical to the given
string pattern:

The original string is divided into two substrings. The first substring, up to, but not
including, the string pattern, is parsed into words using the variables named
before the string pattern on the template. Parsing continues from the character
following the matched string.

SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%T = . . . A4.
SETOLOC %%$PARSE %%S %%T

SETOLOC %%A4 = SAMPLE

%%$PARSE Function

Appendix A AutoEdit Facility in KSL 93

Example

SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%T = A1 A2 'SAMPLE' A3 A4 A5
SETOLOC %%$PARSE %%S %%T

A match is found since the string SAMPLE is part of the original string.

System variable %%$PARSRC can be used to check if all strings specified in the
template were matched during the parsing process, which was described in
“Parsing Words” on page 91.

The original string is divided into two substrings while the matched part of the
string is excluded. Parsing of the first substring uses the variables listed before the
match on the template while parsing of the second substring uses the variables
listed after the match:

First substring: THIS IS A

As a result of parsing:

A1=THIS
A2=IS A

Second substring: STRING

As a result of parsing:

A3=STRING
A4=NULL
A5=NULL

2. A match is not found, there is no substring identical to the given string pattern
within the string:

It is assumed that a match is found at the end of the string. The first substring
consists of the entire string and it is parsed using only the variables named before
the string pattern on the template. Parsing continues from the character following
the matched string, the end of the string, in this case.

Example

SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%T = A1 A2 A3 'EASY' A4 A5
SETOLOC %%$PARSE %%S %%T

A match is not found since the string EASY does not exist in the original string.

%%$PARSE Function

94 KeyStroke Language (KSL) User Guide

First substring: THIS IS A SAMPLE STRING

As a result of parsing:

A1=THIS
A2=IS
A3=A SAMPLE STRING

Second substring: NULL

As a result of parsing:

A4=NULL
A5=NULL

Using Numeric Patterns Within the Template

Numeric patterns are numbers that mark positions within the string. They are used to
break the original string into substrings at the position indicated by the number.

The position specified can be absolute or relative:

■ An absolute position is specified by an unsigned number.
■ A relative position is specified by a signed number (positive or negative). It

determines a new position within the string, relative to the last position.

Last position refers to one of the following:

■ The start of the string (position 1) if last position was not specified previously.

■ The starting position of a string pattern if a match was found.

■ The end of the string if the string pattern was not matched.

■ The last position specified by a numeric pattern.

If the specified position exceeds the length of the string, the numeric pattern is
adjusted to the end of the string. Similarly, if the specified position precedes the
beginning of the string (negative or zero numeric pattern), the beginning of the string
is used as the last position.

%%$PARSE Function

Appendix A AutoEdit Facility in KSL 95

Example 1

A parsing template with an absolute numeric pattern:

First substring: THIS IS A (up to, not including, position 11)

As a result of parsing:

A1=THIS
A2=IS A

Second substring: SAMPLE STRING (from position 11, to the end of the string).

As a result of parsing:

A3=SAMPLE
A4=STRING
A5=NULL (0 length string)

Example 2

A parsing template with a relative numeric pattern:

Last position is the beginning of the string (position 1).

Position marked within the string is 1 + 10 = 11.

First substring: THIS IS A (up to, not including, position 11)

As a result of parsing:

A1=THIS
A2=IS A

Second substring: SAMPLE STRING (from position 11, to the end of the string).

As a result of parsing:

SETOLOC %%S =THIS IS A SAMPLE STRING
SETOLOC %%T = A1 A2 11 A3 A4 A5
SETOLOC %%$PARSE %%S %%T

SETOLOC %%S =THIS IS A SAMPLE STRING
SETOLOC %%T = A1 A2 +10 A3 A4 A5
SETOLOC %%$PARSE %%S %%T

%%$PARSE Function

96 KeyStroke Language (KSL) User Guide

A3=SAMPLE
A4=STRING
A5=NULL (0 length string)

Using More Than One Pattern and Combining Pattern Types
in the Template

Both types of patterns (string and numeric) can be intermixed in the same template.
Up to 30 patterns and up to 30 variable names can be specified.

Scanning of the string proceeds from the beginning of the string until the first pattern
(if any).

1. String pattern – a match was found:

The substring that precedes the match with the pattern is parsed using the
variables named in the template before the pattern, with the last variable receiving
the end of the substring, including leading or trailing blanks.

2. String pattern – a match was not found:

Since no match was found within the string, it is assumed that a match is found at
the end of the string. The whole string is parsed using only the variables named in
the template before the pattern.

3. Numeric pattern (absolute).

The absolute numeric pattern points to a position within the string. The beginning
of the string is position 1.

The string is divided into two substrings.

The first substring extends from the beginning of the string and up to, but not
including, the position that corresponds to the numeric pattern. This substring is
parsed using the variables named in the template before the pattern.

If the absolute numeric pattern specifies a position beyond the length of the string,
it is readjusted to the first position beyond the length of the string and the entire
string is parsed using the variables named in the template before the pattern.

4. Relative numeric pattern:

The relative numeric pattern (a signed number) specifies a position within the
string, relative to the last position.

%%$PARSE Function

Appendix A AutoEdit Facility in KSL 97

5. Last position:

If the relative numeric pattern is the first pattern within the template, the last
position is the beginning of the string.

If the relative numeric pattern is not the first pattern within the template and the
previous pattern was numeric, the last position is that specified by the previous
numeric pattern.

If the relative numeric pattern is not the first pattern within the template and the
previous pattern was a string, the last position is that of the starting character of
the match (if there was a match) or the position following the end of the string (if
there was no match).

As a result of what was just explained

■ If a pattern was not matched until the end of the string and the following pattern is
a string pattern, this new string pattern is ignored since the starting point for the
new scan is the end of the string.

■ If a pattern was not matched until the end of the string and the following pattern is
a numeric pattern, then the scan and subsequent parsing resume from the new
position indicated by that numeric pattern.

Example 1

A parsing template with two absolute numeric patterns, with the second position
preceding the first:

The following statements:

have the same result as the following DO SET statements:

First substring: THIS IS A (up to, not including, position 11)

As a result of parsing:

A1=THIS
A2=IS A

SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%T = A1 A2 11 A3 6 A4
SETOLOC %%$PARSE %%S %%T

SETOLOC %%A1 = THIS
SETOLOC %%A2 = IS A
SETOLOC %%A3 = SAMPLE STRING
SETOLOC %%A4 = IS A SAMPLE STRING

%%$PARSE Function

98 KeyStroke Language (KSL) User Guide

Second substring: SAMPLE STRING from position 11 and up to the end of the string.
Because the next pattern, position 6, precedes the previous position, it cannot limit
this second substring.

As a result of parsing:

A3=SAMPLE STRING

Third substring: IS A SAMPLE STRING (from position 6 to the end of the string)

As a result of parsing:

A4=IS A SAMPLE STRING

Example 2

A parsing template with one absolute and one relative numeric pattern:

First substring: THIS (beginning of the string up to, not including, position 6).

As a result of parsing:

A1=THIS

Second substring: IS (from position 6 up to, not including, position 6+3=9)

As a result of parsing:

A2=IS

Third substring: A SAMPLE STRING (from position 9 to the end of the string)

As a result of parsing:

A3=A SAMPLE STRING

SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%T = A1 6 A2 +3 A3
SETOLOC %%$PARSE %%S %%T

%%$PARSE Function

Appendix A AutoEdit Facility in KSL 99

Example 3

A parsing template with two relative numeric patterns:

The following statements:

have the same result as the following statements:

The first numeric pattern specifies a position at column 40. This is beyond the end of
the string so position is reset to column 24 (end of string + 1). As a result, the entire
string is parsed to words using variables A1 and A2.

The second numeric pattern specifies a position at column 11 (end of the string + 1
minus 13) that precedes the position (40 readjusted to 24) previously specified.
Therefore, the data from the last position, to the end of the string is parsed to words
using variable A3 (A3 is set to NULL).

The data (from column 12 to the end of the string) is parsed to words using variables
A4 and A5.

Example 4

Combining string pattern and numeric pattern:

The following statements:

have the same result as the following statements:

SETOLOC %%T = A1 A2 +40 A3 -13 A4 A5
SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%$PARSE %%S %%T

SETOLOC %%A1 = THIS
SETOLOC %%A2 = IS A SAMPLE STRING
SETOLOC %%A3 = %%NULL
SETOLOC %%A4 = SAMPLE
SETOLOC %%A5 = STRING

SETOLOC %%S = THIS IS A SAMPLE STRING
SETOLOC %%T = A1 `A' A2 +3 A3
SETOLOC %%$PARSE %%S %%T

SETOLOC %%A1 = THIS IS
SETOLOC %%A2 = A S
SETOLOC %%A3 = AMPLE STRING

%%$PARSE Function

100 KeyStroke Language (KSL) User Guide

The pattern specifies a string (A) that is matched at column 9. The data before column
9 is parsed to words using variable A1. The numeric pattern (+3) specifies a position
at column 12 by using relative position. The data from column 9 to column 12 is
parsed to words using variable A2. The remaining data (from column 12 to the end of
the string) is parsed to words using variable A3.

Appendix B KOA VTAM Exception Codes 101

A p p e n d i x B
B KOA VTAM Exception Codes

KOA VTAM Exception codes are listed and described below.

NOTE
%VTAMFDBK (if specified) contains information supplied by VTAM applications in the
hexadecimal representation of two full words (16 characters). These two values (usually RPL
and ACB error information) are determined by the specific error as described below.

For example, whenever RTNCD and FDBK2 are specified, the first 8 characters contain the
hexadecimal representation of the RPL RTNCD field, and the next 8 characters contain the
representation of the RPL FDBK2 field. If R15 and R0 are specified, the first 8 characters
contain the hexadecimal representation of the contents of Register 15, and the next 8
characters contain the representation of the contents of Register 0.

These codes and their descriptions can be found in the IBM VTAM Programming manual.

Table 32 KOA VTAM Exception Codes (part 1 of 3)

%VTAMRC %VTAMERR %VTAMFDBK Description

0 OK The last operation completed
successfully.

4 UNSOLMSG An unsolicited (unexpected) message
was received. The message can either be
accepted (by means of the GETSCREEN
command) or rejected (by re-sending
the last screen).

8 NODATA The GETSCREEN command did not
receive any new messages from the
VTAM application.

12 TIMEOUT Response was not received from the
VTAM application for n seconds. The
maximum wait period is specified by
the TIMEOUT command or by the
KOATIME installation parameter.

102 KeyStroke Language (KSL) User Guide

16 ERROR-EXIT RTNCD, FDBK2 A VTAM error exit (SYNAD or LERAD)
was activated because of an exception
situation. The RTNCD and FDBK2 RPL
fields determine the specific error
situation.

20 NSEXIT The NSEXIT VTAM Exit was activated
because of a network services exception
situation.

24 SESS-NOT-ACT A KOA communication command
failed because the session was no longer
active.

28 VTAMREQ R15 R0 A VTAM command (for example,
SEND, RECEIVE) was rejected by the
VTAM application. The values of
registers 15 and 0 determine the specific
error.

32 NOSTORAGE KOA processing could not continue due
to insufficient storage. The REGION
parameter (in the JCL procedure)
should be increased, and the KOA
script should be reactivated.

36 OPEN ACB error flag An error occurred while opening the
ACB. The error flag indicates the
specific reason for the failure.

40 SLUNOTDEF The terminal name specified in the
LOGON command was not defined to
VTAM. No new sessions can be
initiated.

44 NOFREESLU Selection of a KOA terminal (SLU)
failed because all defined terminals
were currently in use; no new sessions
can be initiated.

48 NOTACCEPT An attempt was made to initiate a
session with a non-available VTAM
application or a VTAM application
which is not ready to accept any new
sessions.

52 SETLOGON RTNCD, FDBK2 The SETLOGON VTAM command
(which enables KOA to start sessions)
could not be executed. The RTNCD and
FDBK2 RPL fields determine the
specific error situation.

56 REQSESS RTNCD, FDBK2 The REQSESS VTAM command (which
initiates a session with a VTAM
application) could not be executed. The
RTNCD and FDBK2 RPL fields
determine the specific error situation.

Table 32 KOA VTAM Exception Codes (part 2 of 3)

%VTAMRC %VTAMERR %VTAMFDBK Description

Appendix B KOA VTAM Exception Codes 103

60 BIND-REJECT The specified parameters prevent
session initiation. Check the validity of
the supplied LOGMODE.

64 RECEIVE RTNCD, FDBK2 The RECEIVE VTAM command (which
accepts a message from a VTAM
application) could not be executed. The
RTNCD and FDBK2 RPL fields
determine the specific error situation.

68 INVALID-DATA A message (from the VTAM
application) which contains invalid data
was received. KOA cannot display the
data.

72 UNKNOWN-
CMD

A message (from the VTAM
application) which contains an
unknown 3270 command was received.
KOA cannot display the data.

76 SEND RTNCD, FDBK2 The SEND VTAM command (send a
message to the VTAM application)
could not be executed. The RTNCD and
FDBK2 RPL fields determine the
specific error situation.

80 KEYLOCKED The keyboard was locked. Messages
cannot be sent to the VTAM application.

84 QUIESCED The session was halted (as requested by
the application). Messages cannot be
sent to the VTAM application.

88 CLOSE ACB error flag An error occurred while closing the
ACB. The error flag indicates the
specific reason for the failure.

92 INVREQ An invalid request from the KOA
session handler caused an internal
error.

Table 32 KOA VTAM Exception Codes (part 3 of 3)

%VTAMRC %VTAMERR %VTAMFDBK Description

104 KeyStroke Language (KSL) User Guide

Appendix C Sample KeyStroke Reports and Utilities 105

A p p e n d i x C
C Sample KeyStroke Reports and
Utilities

The IOA KSL and IOA SAMPLE libraries contain BMC Software-supported and
customer-contributed examples of KSL scripts, respectively.

Sample KSL Report Outputs . 106

Two types of reports are available:

■ Reports produced in batch by KSL scripts. These are listed later in this chapter, and
samples of supported KSL scripts are located in the IOA KSL library.

■ Special reports that cannot readily be produced using the Online facility or KSL.
These are produced by utilities that are described in the INCONTROL for z/OS
Utilities Guide.

Some reports are produced from information in the IOA Log file. Other reports are
produced from the Active Jobs file, Jobs Statistics file, Job Network file and from
scheduling tables.

NOTE
If you choose to modify an existing sample report or utility, BMC Software recommends that
you save the changed report under a different name and keep the original report unchanged.
This precaution can help in error detection if the altered KSL script does not run as expected.

Sample KSL Report Outputs

106 KeyStroke Language (KSL) User Guide

Sample KSL Report Outputs
The following sample outputs are the result of running job REPJBDEF (in the
CONTROL-M JCL library), which invokes sample KSLREPSCHED (in the IOA KSL
library).

Output #1 from the sample KSL Script:

Figure 16 Output from KSL Library Sample KSLREPSCHED

KEYSTROKE REPORTING LANGUAGE (REL PROD.) DATE 06/06/01 TIME 10.08 PAGE 000001
 LIST OF JOBS TABLE: PRODYH LIB: CTM.PROD.SCHEDULE

===

 PRODYIDK UPDATE # 1
 PRODYHST UPDATE # 2
 PRODYJCL CREATE INPUT FILES # 2
 PRODYBTL REPORTS FOR BRANCHES
 PRODYHTK PROCESS INPUT DATA FOR PRODYHST
 PRODYHC2 CREATE INPUT FILE # 2
 PRODYBCK PROCESS INPUT DATA FOR PRODYIDK
 PRODYIZN REPORTS FOR BRANCH MANAGERS
 PRODYEND REPORTS FOR MAIN OFFICE
 PROJYFOT BEGIN OF EVENING PROCESS
 PROJYMRG EVENING UPDATE PROCEDURE
 PROJYMTI VERIFICATION PROCESS OF EVENING UPDATE
 PROJYHO1 SPECIAL CALCULATIONS FOR ACCOUNTING DEPARTMENT
 PROJYHO2 REPORTS FOR ACCOUTING DEPARTMENT
 PROJYDPY UPDATE OF ON-LINE FILES
 PROJYDTK REPORTS OF ON-LINE FILES
 PROJYDLI CREATE DUAL ON-LINE FILE
 PROYH11 YH APPLICATION UPDATE
 PROJYFIN CLEAN-UP FOR YH APPLICATION
 PROJYBNK VERIFICATION OF BRANCH BALANCES
 PROJEND FINAL YH APPLICATION PROCEDURE
 PROLYPAR NIGHT INPUT COLLECTION # 1
 PROLYDOC BACKUP FILES STATUS REPORTS
 PROLYFMZ REPORTS FOR MAIN OFFICE
 PROLYDEL DELETE TEMPORARY "REPORT" FILES
 PROLYBME CREATE EXTERNAL TAPE
 PROLYDM2 ARCHIVE YH APPLICATION DATA SETS #2
 PROLYDM1 ARCHIVE YH APPLICATION DATA SETS #1
 ======= >>>>>>>>>>>>>>>>>>> NO MORE JOBS IN TABLE <<<<<<<<<<<<<<<< =======

Sample KSL Report Outputs

Appendix C Sample KeyStroke Reports and Utilities 107

Output #2 from the sample KSL Script:

BMC SOFTWARE, INC. IOA KEY-STROKE REPORTING LANGUAGE (REL PROD.)DATE 06/06/01 TIME
10.12
PAGE 000001

 SCHEDULE DEFINITION OF MEMBER PRODYBCK IN TABLE PRODYH LIBRARY
CTM.PROD.SCHEDULE
 ======================================
 +---+
 | MEMNAME PRODYBCK MEMLIB CTM.PROD.SCHEDULE |
 | OWNER M44 TASKTYPE JOB PREVENT-NCT2 Y DFLT N |
 | APPL APPL-L GROUP BKP-PROD-L |
 | DESC DAILY BACKUP OF SPECIAL FILES FROM APPL-L |
 | OVERLIB CTM.OVER.JOBLIB |
 | SET VAR |
 |.CTB STEP AT NAME TYPE |
 | DOCMEM BACKPL02 DOCLIB CTM.PROD.DOC |
 | === |
 | DAYS DCAL |
 | AND/OR |
 | WDAYS WCAL |
 | MONTHS 1- Y 2- Y 3- Y 4- Y 5- Y 6- Y 7- Y 8- Y 9- Y 10- Y 11- Y 12- Y |
 | DATES |
 | CONFCAL WORKDAYS SHIFT RETRO N MAXWAIT 04 D-CAT |
 | MINIMUM PDS |
 | === |
 | IN START-DAILY-BACKUP ODAT |
 | CONTROL |
 | RESOURCE INIT 0001 CART 0001 |
 | PIPE |
 | TIME: FROM UNTIL PRIORITY DUE OUT SAC CONFIRM |
 | === |
 | OUT BAKCKPL02-ENDED-OK ODAT + |
 | AUTO-ARCHIVE Y SYSDB Y MAXDAYS MAXRUNS |
 | RETENTION: # OF DAYS TO KEEP 030 # OF GENERATIONS TO KEEP |
 | SYSOUT OP (C,D,F,N,R) FROM |
 | MAXRERUN RERUNMEM INTERVAL FROM |
 | STEP RANGE FR (PGM.PROC) . TO . |
 | ON PGMST PROCST CODES A/O |
 | DO |
 | SHOUT WHEN TO URGN |
 | MS |
 ======= >>>>>>>>>>>>>>>>>>> END OF SCHEDULING PARAMETERS <<<<<<<<<<<<<<<< =====

Sample KSL Report Outputs

108 KeyStroke Language (KSL) User Guide

Appendix D KSL Library Scripts 109

A p p e n d i x D
D KSL Library Scripts

This table lists the KSL library scripts and their associated products, libraries, and JOB
members. If an associated job member is not listed for a script, a standard KSL
procedure can be used for that script.

You can use these scripts to design scripts for your own report utilities.

NOTE
In addition to the scripts in the IOA KSL library, the IOA SAMPLE library contains many
other useful scripts. However, the scripts in the IOA SAMPLE library have been developed
and supplied by users. They have been placed in the IOA SAMPLE library as examples. They
have not been tested and they are not supported.

Script Product Library
JOB member in
xxx.JCL Description

ADDCOND7 IOA KSL ADDMNCND Manual operations to be performed at
night. Called REP7COND prior to version
6.0.00.

ADDMAYBE CTM KSL MAYBEJOB A general utility routine to add maybe
conditions.

ADDMNCND IOA Add manual conditions based on prefix.

BJR5ALL CTB All CONTROL-M/Analyzer Log messages
during a specified period.

BRPBLEFT CTB KSL All CONTROL-M/Analyzer missions that
have not yet been scheduled, and a
description for the problem.

BRPCOMM CTB KSL Values of variables committed to the
database for each rule invocation.

BRPGRP CTB KSL Site-defined application groups and their
current mode of implementation.

BRPINV CTB KSL Status of all jobs currently in the Active
Balancing file.

BRPJPRT CTB KSL Printout of the invocation report of a
specific rule.

110 KeyStroke Language (KSL) User Guide

BRPRLBK CTB KSL Roll back a specific Rule Activity display
entry.

BRPRLDEF CTB KSL Printout of specified rule definitions.

BRPROLL CTB KSL Roll back a CONTROL-M/Analyzer
invocation from a specified job step.

BUTCRGRP CTB KSL Create a group in the CONTROL-
M/Analyzer database.

BUTCRVAR CTB KSL Create a variable definition under a
specified group in the CONTROL-
M/Analyzer database.

BUTMSORD CTB KSL Order a CONTROL-M/Analyzer
balancing mission.

CTDSCREN CTD SAMPLE Printout of all CONTROL-V screens (for
documentation and training).

CTOALOR1 CTO SAMPLE Lists the Automation Log messages for the
specified date. Called REPOALO prior to
version 6.0.00.

CTTEXPV CTT SAMPLE Uses CONTROL-M/TAPE API in order to
expire (make scratch) volumes. the
program reads the input volumes from the
SYSIN DD.

DHLDGRP1 CTD SAMPLE Hold a group of reports.

HOLDELGR CTM KSL DELGROUP Hold and delete all entries related to a
certain CONTROL-M group.

HOLDGRP CTM KSL HOLDGRUP Hold a group of jobs in the AJF.

HOLDGRUP CTM Hold a group of jobs.

MAYBEJOB CTM Add prerequisite conditions for maybe
jobs.

ORDERBPR CTD SAMPLE Order or force backup, printing or restore
missions.

ORDERREP CTD SAMPLE Order or force report decollating missions.

ORDERRUL CTO SAMPLE Order a specified rule. Called RULORDER
prior to version 6.0.00.

PRINTREP CTD

CTV

SAMPLE Print specific reports by specifying report
name, index value and date.

REP3GRUP CTM Status of all the jobs of specified groups.

REP3LEFT CTM All jobs still in the Active Job File that did
not run during the previous night (wait
schedule, ended NOT OK, executing) and
the reasons for the problems.

REP3STAT CTM Statistical summary of what must be done
tonight, or job status in the morning.

REP3TAPE CTM Status of all jobs using tapes.

Script Product Library
JOB member in
xxx.JCL Description

Appendix D KSL Library Scripts 111

REP3WHY CTM All jobs in the Active Jobs file having a
WAIT SCHEDULE status.

REP5ABND IOA All abends in a given period.

REP5ALL IOA All IOA Log file messages of a specified
period.

REP5MSGD IOA All IOA Log file messages of specified
message codes for a specific period.

REPCALND IOA SAMPLE Printout of calendar definitions. Called
REP8CAL prior to version 6.0.00.

REPJOBAV CTM KSL REP3AVER This report prints job statistical
information for all or selected jobs
currently residing on the AJF.

REPJOBGR CTM KSL REP3GRUP This report prints the status of all jobs on
the AJF belonging to specified groups.

REPJOBMO CTM KSL REP3LEFT Print all the jobs left (WAIT SCHEDULE,
ended not ok, executing) on the active jobs
file, and a description for the problem.

REPJOBMO CTM KSL CTMPSIMS Skeleton for simulation job and tape pull
list.

REPJOBRS CTM KSL REP3RSHS Last night restart history report.

REPJOBSA CTM KSL REP3STAV Print list of jobs that exceeded average
elapsed time.

REPJOBSS CTM KSL REP3STAT Print a statistical summary of what should
be done tonight, or job status the next day.

REPJOBSY IOA SAMPLE

REPJOBTP CTM KSL REP3TAPE Prints the status of all jobs on the AJF
using a tape.

REPJOBWH CTM KSL REP3WHY Print list of jobs which are in WAIT
SCHEDULE status.

REPLGGRD CTD SAMPLE Print all log messages for specific groups.

REPLGMSG IOA KSL REP5MSGD Print all log messages for specific messages
for a specific period of time.

REPLOGAB IOA KSL REP5ABND Print all ABENDS in a period.

REPLOGAL IOA KSL REP5ALL All IOA Log file messages of a specified
period.

REPLOGAL IOA KSL REP5ALL Print all the log messages for a specific
date.

REPLOGCN IOA SAMPLE Print all log events associated with
messages.

REPLOGEM CTM SAMPLE Print all the emergency (recovery) jobs
which were activated in a period.

REPLOGEX IOA SAMPLE Log - exception report.

REPLOGGR CTR SAMPLE Print all log messages of specified groups.

Script Product Library
JOB member in
xxx.JCL Description

112 KeyStroke Language (KSL) User Guide

REPLOGMN IOA SAMPLE Print all log messages of type user.

REPLOGNC CTM SAMPLE Print all 'NOT CATLGD 2' log events in a
period.

REPLOGRS CTM SAMPLE Print all log events associated with
messages.

REPLOGST IOA SAMPLE Night exception report. Called REP5EXP
prior to version 6.0.00.

REPLOGST IOA SAMPLE Print job statistics at night.

REPLOGUS IOA SAMPLE Print all log messages of specified users.

REPOJHST CTO SAMPLE List events and important messages for
specified jobs and started tasks. Input to
the report is the REPJHIST rule table in the
CONTROL-O RULES library. Called
REPJHSJ prior to version 6.0.00.

REPRERUN CTM KSL RERUNJOB Rerun a specified job.

REPRULED CTO SAMPLE Prints specified rule definitions. Called
REPRLDEF prior to version 6.0.00.

REPSCHED CTM KSL REPJBDEF Report routine to print job schedules.

REPUPRT CTD KSL Print a report via
IMMEDIATE/DEFERRED print option in
the USER screen.

REPUSRHP CTD KSL Print a list of the user's reports currently
available in the history file.

REPUSRHR CTD KSL Change retention period of reports of
specified job from the history file.

REPUSRPP CTD KSL Print a list of user's reports currently
available for online viewing. The reports
will be requested to PRINT DEFERRED
(with a PRINTING MISSION).

REPUTREE CTD SAMPLE Create a recipient tree from a given report.

REPUURUL CTD SAMPLE List of the user’s currently defined rulers.

REPUUSRA CTD SAMPLE List of all users who may receive

■ a report from a specified job (including
the names of the reports)

■ list of all users who may receive a
specific report.

■ list of all user’s reports currently
available for online viewing, and their
status, line count and page count.

REPUUSRP CTD SAMPLE List of all reports a user may receive at any
time.

REPVOLES CTT SAMPLE List of all or selected volumes in the Media
Database.

Script Product Library
JOB member in
xxx.JCL Description

Appendix D KSL Library Scripts 113

RPDAMSCH CTD SAMPLE Status of all missions currently in the
Active Missions file (such as tonight’s
schedule or last night’s schedule).

RPDGLBC CTD SAMPLE Perform global changes to the IN condition
in report decollating missions.

RPDJOBGR CTD SAMPLE Status of all report decollating missions of
specified groups.

RPDJOBMO CTD SAMPLE All missions remaining in the morning
(WAIT SCHEDULE, Ended NOTOK), with
explanation.

RPDJOBUS CTD SAMPLE Status of all the reports (jobs) to be
decollated for specified user IDs.

RPDPSCHD CTD SAMPLE Printout of printing mission definitions.

RPDRERUN CTD SAMPLE Rerun a report decollating mission.

RPDSCHED CTD SAMPLE Printout of report decollating mission
definitions.

RPRSV CTM SAMPLE Print all restart messages for a given
period.

RPTABRUL CTO SAMPLE Cross-references all tables and rules for
each message. Called REPOXRFM prior to
version 6.0.00.

UPDACTC CTD SAMPLE Update the number of copies of a report.

UPDRPRT CTD SAMPLE This KSL delete oldest duplicate reports
those have the same user, jobname and
report name.

Script Product Library
JOB member in
xxx.JCL Description

114 KeyStroke Language (KSL) User Guide

Index 115

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Index

Symbols
Character

User-Defined Variable 84
$ Character

AutoEdit Operators 87
User-Defined Variable 84

% Symbol
AutoEdit Variable 36

%% Symbol
AutoEdit Variable 36

%%$CALCDATE Function
KSL 87

%%$DIV
AutoEdit Operator 87

%%$MINUS
AutoEdit Operator 87

%%$PARSE Function
Example 91, 95, 97
KSL 89

%%$PARSRC
System Variable 93

%%$PLUS
AutoEdit Operator 87

%%$SUBSTR Function
KSL 88

%%$TIMEINT Function
KSL 89

%%$TIMES
AutoEdit Operator 87

%%$var
System Variable 82

%%RANGE Control Statement
KSL Script 23

%%SUBSTR Function
KSL 88

%A1%A9
KSL Variable 22, 36

%CALLRC
KSL Variable 36

%CRLINE
KSL Variable 37

%FINDRC
KSL Variable 37

%MSG
KSL Variable 37

%RC

KSL Variable 22, 37
%SCRCOL

KSL Variable 37
%SESSID KOA Variable 54
%VTAMERR KOA Variable 54, 63
%VTAMFDBK KOA Variable 54, 63

Values 101
%VTAMRC KOA Variable 63
@ Character

User-Defined Variable 84

A
Abend Report

REP5ABND Utility 111
ADDMNCND Utility

KSL Script 109
ALLOC KSL Command 33
ANY Parameter

SCREENMODE Command 53
APPLICATION Parameter

KOA RECORDER Screen 71
APPLID Parameter

LOGON KOA Command 52
ATTN Command

KOA 49, 50, 57
ATTR KSL Screen Attribute

IFSCREEN Command 28
AutoEdit Facility

KSL 81
AutoEdit Operator

KSL 87
AutoEdit Variable

Global 34
KSL Script 22
Resolution 84

AutoEdit Variables
KOA 62, 65

Automatic restart definition
JCLCTRDF KSL utility 75

AutoRefresh
KOA 60

116 KeyStroke Language (KSL) User Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B
Batch Job

Preset Environment 69
BEEP KSL Screen Attribute 28
BMC Software, contacting 2
BOTTOMLINE KSL Command 31
BOTTOMSIZE KSL Command 31

C
CALL KSL Command 27
CALLMEM Command

KSL 22
CALLMEM KSL Command 27
CICS

VTAM 55
CLEAR KSL Command 25
CLOSEFILE KSL Command 33
COLOR

KSL Screen Attribute 28
COLOR Command

KOA 51, 54
Commands

MAXCOMMAND 30
Communication Commands

KOA 51
CONFIRM field

JCLCTRDF utility 76
CONTROL-O

KSL 34
Conventions Used in This Guide 12
CTORKOA Batch Procedure

KOA Script 70
customer support 3

D
DACALL DD Statement

IOARKSL Procedure 18
KOA Activation 49

DAKSLOUT DD Statement
IOARKSL Procedure 18
KOA Activation 48

DAKSLPRM DD Statement
IOARKSL Procedure 18
KOA Activation 48

DAKSLREP DD Statement
KSL Script 18

DAREPORT DD Statement
KOA Activation 49

DATA Parameter
LOGON KOA Command 52

Date Calculation
%%$CALCDATE Function 87

DD Statement
DACALL 18
DAKSLOUT 18
DAKSLPRM 18
DAKSLREP 18

Debugging
TRACE ON Parameter 18

DO KSL Statement
Execution 68

E
END Command

KSL 27
END KSL Command 27
ENTER KSL Command 25
Exception Code

VTAM 101
Exception Handling

VTAM 64
Exchanging Messages

KOA and VTAM 56
EXEC KSL Command 27

F
FIND Command

KSL 26
Flow Commands

KOA 50
KSL 27

FREE KSL Command 33

G
GETFILE KSL Command 33
GETSCREEN Command

KOA 51, 57, 60, 64
GETUNSOL Parameter

SCREENMODE Command 53
Global Variables

KOA 65
GOTO KSL Command 28
GOTO Parameter

ON SCREENERROR Command 50

H
HEADERLINE KSL Command 31
HEADERSIZE KSL Command 31
HILITE KSL Screen Attribute 28, 29
HOLDFRUP

KSL Script 110

Index 117

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

I
IFSCREEN KSL Command 28
IFVAR KSL Command 30
IGNUNSOL Parameter

SCREENMODE Command 53
IMS/DC

VTAM 55
IOA KSL library 105
IOA SAMPLE library 75, 105
IOARKOA Procedure 48

J
JCLCTRDF utility

Automatic Restart Definition 75
Julian Date

%%$CALCDATE 87

K
KOA

Access to IOA Online Facility 61
Activation 48
ATTN Command 57
AutoEdit Variables 62
AutoRefresh 60
COLOR Command 54
Commands and Variables Summary 49
Communicating with CONTROL-O 64
Communication Commands 51
Exception Handling 63
Flow Commands 50
General 39
GETSCREEN Command 57, 60, 64
Implementation 54
Initiating a Session 55
Logic 40
Messages 56
ON SCREENERROR Command 64
Online Facility Access 61
Output Script 72
Parameters 71
Preset Environment 66
Principles of Operation 43
Recorder 70
Recorder Facility 70
Screen Commands 49, 50
SCREENMODE ANY Command 57
SCREENMODE GETUNSOL Command 59, 64
SCREENMODE IGNUNSOL Command 59
SCREENMODE NORECEIVE Command 57
SCREENMODE RECEIVE Command 57
SCREENMODE UNLOCKED Command 57
SCREENSIZE Command 54

Scripts 43
Scripts and Utilities 48
Session Characteristics 54
Special Variables 54
Terminating a Session 57
Testing a Script 70
Unexpected Messages 59
Updating Scripts 69
VTAM Exception Codes 101
VTAM Messages 56

KOA Command
LOGON 55

KOA Command LOGON
TERMINAL Parameter 55

KOA Facility
Messages 56

KOA Recorder Facility 70
KOA Session Characteristics

LOGMODE 54
KSL

AutoEdit Facility 81
Flow Commands 27
Principles of Operation 19
Print Commands 31
Processing Commands 33
Sample Script 19, 20
Screen Commands 25
Scripts 18
Syntax 22
Utilities 22
Variable Resolution 85
Variables 36

KSL mixed case support 23
KSL report

Last Night Sysout Scan Summary REPJOBSY 80
Late Night Restart History REP3RSHS 77
Manual Restart Confirmation REP5MNCN 76
Restart Detail REP5RSTR 77
Restart Time Savings RPRSV 79

KSL Sample Report
Example 106

KSL Sample Script
Example 106

KSL Script
Library Member 20

KSL scripts
libraries 105

KSL Variables
KSL Script 36
Special 36

L
LABEL KSL Command 30
Last Night Sysout Scan Summary Report

REPJOBSY 80

118 KeyStroke Language (KSL) User Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Late Night Restart History Report
REP3RSHS 77

library name
JCLCTRDF utility 76

LOCKED KSL Screen Attribute 28
LOGMODE

KOA Session Characteristics 54
LOGMODE Parameter

LOGON KOA Command 52
LOGOFF Command

KOA 52
LOGON

KOA Command 55
LOGON Command

KOA 52
LOGON DATA Parameter

KOA RECORDER Screen 71
LU NAME Parameter

KOA RECORDER Screen 71

M
Manual Restart Confirmation Report

REP5MNCN 76
MAXCOMMAND Command 30
MAYBEJOB

KSL Script 110
Message

Unexpected Messages 59
Messages Not Expected

KOA 59

N
NORECEIVE Parameter

SCREENMODE Command 53
NULL Value

%%$PARSE Function 91
Numeric Pattern

%%$PARSE Function 94

O
OK Option

Primary Option Menu 70
OMEGAMON

VTAM 55
ON SCREENERROR Command

KOA 50, 64
Online Facility

Access using KOA 61
OPENFILE KSL Command 34

P
PA01PA03 KSL Keys 26
PAGESIZE KSL Command 31
Parsing Logic

%%$PARSE Function 96
Parsing Template

%%$PARSE Function 92, 95, 97
Parsing Text

%%$PARSE Function 90
PAUSE KSL Command 30
PF01PF24 KSL Keys 26
Prerequisite Condition

% Sign 36
Cross Reference 110

Preset Environment
Batch Jobs 69
Usage 66

Print Commands
KSL 31

PRINTLINE KSL Command 31
PRINTNEWPAGE KSL Command 32
PRINTSCREEN KSL Command 32
Processing Commands

KSL 33
product support 3
PUTFILE KSL Command 34

R
RECEIVE Parameter

SCREENMODE Command 53
REP3ABND

KSL Script 111
REP3GRUP

KSL Script 110
REP3LEFT

KSL Script 110
REP3RSHS KSL report

Late Night Restart History 77
REP3STAT

KSL Script 110
REP3TAPE

KSL Script 110
REP3WHY

KSL Script 111
REP5ABND Utility

Abend Report 111
REP5ALL

KSL Script 111
REP5MNCN KSL report

Manual Restart Confirmation 76
REP5MSGD

KSL Script 111
REP5RSTR KSL report

Restart Detail 77

Index 119

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

REPJOBSY KSL report
Last Night Sysout Scan Summary 80

report
Last Night Sysout Scan Summary REPJOBSY 80
Late Night Restart History REP3RSHS 77
Manual Restart Confirmation REP5MNCN 76
Restart Detail REP5RSTR 77
Restart Time Savings RPRSV 79

Restart definition
JCLCTRDF utility 75

Restart Detail Report
REP5RSTR 77

Restart Time Savings Report
RPRSV 79

RETURN Command
KSL 30

RPRSV KSL report
Restart Time Savings 79

S
SAMPLE library 75
scheduling table name

JCLCTRDF utility 76
Screen Commands

KOA 49, 50
KSL 25

SCREENMODE ANY Command
KOA 57

SCREENMODE Command
KOA 53

SCREENMODE GETUNSOL Command
KOA 59, 64

SCREENMODE IGNUNSOL Command
KOA 59

SCREENMODE NORECEIVE Command
KOA 57

SCREENMODE RECEIVE Command
KOA 57

SCREENMODE UNLOCKED Command
KOA 57

Screens
IOA KOA Recorder 71
KOA Recorder 71

SCREENSIZE Command
KOA 54

SCREENSIZE KSL Command 26
Script

KOA Recorder 72
SCRIPT FILE Parameter

KOA RECORDER Screen 71
Servers

Comparison of Types 68
Work Flow 68

SESSID Parameter
LOGON KOA Command 52

SETLINE KSL Command 32
SETOGLB KSL Command 34
SETOLOC Command

%%$PARSE Function 90
User-Defined Variable 84

SETOLOC KSL Command 34
SETSESS Command

KOA 53
SETVAR Command

KSL 22
SETVAR KSL Command 35
SHOUT

KSL Command 35
Special Variables

KOA 54
KSL 21, 36

Started Task
KSL 18

String Extraction
%%$SUBSTR Function 88

String Manipulation
%%$PARSE Function 89

String Pattern
%%$PARSE Function 92

Substring
String 88

support, customer 3
System Date

%%$CALCDATE 87
System Variable

AutoEdit 82

T
TASKTYPE field

JCLCTRDF utility 76
technical support 3
TERMINAL Parameter

KOA Command LOGON 55
LOGON KOA Command 52

Testing
KOA Scripts 70

Text Parsing
%%$PARSE Function 90

Time Interval
%%$TIMEINT Function 89

TIMEOUT Command
KOA 53

TRACE
KSL Command 32

TRACE ON Parameter
Debugging 18

TSO
VTAM 55

TYPE Command
KSL Command 26

120 KeyStroke Language (KSL) User Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

U
UNLOCKED Parameter

SCREENMODE Command 53
Updating

KOA Scripts 69
User-Defined Variable

AutoEdit 84
utility

JCLCTRDF (KSL) Automatic Restart Definition 75

V
Variable Resolution

Example 85
Rules 85

Variable Substitution
Variable Resolution 85

VTAM
CICS 54, 55
Exception Codes 101
Exception Handling 63
IMS/DC 54
KOA Automation 40
KOA Initiation 55
KOA Messages 56
KOA Termination 57
Logoff 58
Logon using KOA 52
Messages 59
Multiple Sessions 42
OMEGAMON 54
TSO 54, 55

W
WAIT SCHEDULE Status

REP3WHY Utility 111

Notes

98651
98651
98651
98651

98651

	Contents
	Figures
	Tables
	About This Guide
	Chapter�1, “Using KeyStroke Language (KSL)”
	Chapter�2, “KSL commands and variables”
	Chapter�3, “KeyStroke OpenAccess (KOA)”
	Chapter�4, “Using KSL with CONTROL-M/Restart”
	Appendix�C, “Sample KeyStroke Reports and Utilities”
	Appendix�B, “KOA VTAM Exception Codes”
	Appendix�C, “Sample KeyStroke Reports and Utilities”
	Appendix�D, “KSL Library Scripts”
	Index
	Conventions Used in This Guide
	Standard Keyboard Keys
	Pre configured PFKeys
	Command Lines and Option Fields
	Names of Commands, Fields, Files, Functions, Jobs, Libraries, Members, Missions, Options, Paramet...
	User Entries
	Syntax statements
	Screen Characters
	Variables
	Special elements

	Information New to This Version
	Related Publications
	INCONTROL for z/OS Installation Guide
	A step-by-step guide to installing INCONTROL products using the INCONTROLTM Installation and Cust...
	INCONTROL for z/OS Administrator Guide
	INCONTROL for z/OS Utilities Guide
	INCONTROL for z/OS Security Guide
	INCONTROL for z/OS Messages Manual
	CONTROL�M User Guide
	CONTROL�M/Analyzer User Guide
	CONTROL�O User Guide

	1 Using KeyStroke Language (KSL)
	Activating KeyStroke Language Scripts
	Principles of Operation
	Modifying scripts

	Language Syntax
	Special considerations

	2 KSL commands and variables
	Commands
	Variables
	Special KSL Variables

	3 KeyStroke OpenAccess (KOA)
	KOA Language Overview
	KOA Logic
	Session Logon
	Session Processing
	Session Logoff

	Principles of Operation
	Example 1
	Example 2

	Sample KOA Scripts and Reports
	Activating the KOA Language
	Example

	KOA Commands and Variables Summary
	KOA Commands and Variables
	KOA Commands
	KOA Special Variables

	KOA Implementation Considerations
	Session Characteristics
	Initiating a Session
	Example

	Exchanging Messages
	Terminating a Session
	Application logoff
	VTAM logoff

	Unexpected Messages
	AutoRefresh Handling
	Using KOA to Access the IOA Online Facility
	Working with CONTROL�O AutoEdit Variables
	Exception Handling
	Communicating With CONTROL�O
	KOA Parameters
	KOA Return Code
	AutoEdit
	Example
	Explanation

	Shout Facility

	Using a Preset KOA Environment
	Preset Environments and Batch Jobs
	Updating KOA Scripts Requiring a Preset Environment
	Testing a Script

	KOA Recording
	KOA Recorder Screen
	Sample Output Script

	4 Using KSL with CONTROL-M/Restart
	Automatic Restart Definition utility (JCLCTRDF)
	Manual Restart Confirmation report (REP5MNCN)
	Restart detail report (REP5RSTR)
	Last Night Restart History report (REP3RSHS)
	Restart Time Savings report (RPRSV)
	Last Night SYSOUT Scan Summary report (REPJOBSY)

	A AutoEdit Facility in KSL
	System Variables
	Example
	AutoEdit System Variables:
	User�Defined Variables
	Rules of Variable Substitution
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	AutoEdit Operators
	%%$CALCDATE Function
	Example

	%%$SUBSTR Function
	Example

	%%$TIMEINT Function
	Format:
	Example

	%%$PARSE Function
	Format:
	Example
	Parsing Words
	Example

	Using Dummy Variables (Place Holders)
	Example

	Using Patterns in Parsing
	Using String Patterns
	Example
	Example

	Using Numeric Patterns Within the Template
	Example 1
	Example 2

	Using More Than One Pattern and Combining Pattern Types in the Template
	Example 1
	Example 2
	Example 3
	Example 4

	B KOA VTAM Exception Codes
	C Sample KeyStroke Reports and Utilities
	Sample KSL Report Outputs

	D KSL Library Scripts
	Index

